Редкие причины моногенного гипопитуитаризма: обзор литературы
Врожденный гипопитуитаризм – группа редких заболеваний, связанных со снижением или отсутствием секреции одного или более гормонов гипофиза. В настоящее время известно, что развитие заболеваний данной группы связано с мутациями более чем в 30 генах, ответственных за развитие гипоталамо-гипофизарной области. Вариабельность клинической картины обусловлена молекулярно-генетической основой. При этом четкую корреляцию генотипа и фенотипа не всегда возможно определить, поскольку даже у членов одной семьи с одной и той же мутацией клинические проявления могут варьироваться. В данном обзоре рассматриваются известные, а также редко встречающиеся факторы транскрипции и сигнальные молекулы, молекулярные дефекты, которые приводят к развитию изолированного и комбинированного дефицита гипофизарных гормонов у человека.Райкина Е.Н., Панкратова М.С., Безлепкина О.Б.
Ключевые слова
Список литературы
1. Cohen L.E. Genetic disorders of the pituitary. Cur. Opin Endocrinol Diab Obes. 2012;19:33–9. Doi: 10.1097/MED.0b013e32834ed639.
2. Parkin K., Kapoor R., Bhat R., et al. Genetic causes of hypopituitarism. Aoms. 2020;16:27–33. Doi: 10.5114/aoms.2020.91285.
3. Bosch I., Ara L., Katugampola H., Dattani M.T.Congenital Hypopituitarism During the Neonatal Period: Epidemiology, Pathogenesis, Therapeutic Options, and Outcome. Front Pediatr. 2021;8:600962. Doi: 10.3389/fped.2020.600962.
4. Binder G., Weber K., Rieflin N., et al. Diagnosis of severe growth hormone deficiency in the newborn. Clin Endocrinol. 2020;93:305–11. Doi: 10.1111/cen.14264.
5. Fang Q., George A.S., Brinkmeier M.L., et al. Genetics of Combined Pituitary Hormone Deficiency: Roadmap into the Genome Era. Endocrin Rev. 2016;37:636–75. Doi: 10.1210/er.2016-1101.
6. Gregory L.C., Dattani M.T. The Molecular Basis of Congenital Hypopituitarism and Related Disorders. J Clin Endocrinol Metab. 2020;105:e2103–20. Doi: 10.1210/clinem/dgz184.
7. Otto A.P., França M.M., Correa F.A., et al. Frequent development of combined pituitary hormone deficiency in patients initially diagnosed as isolated growth hormone deficiency: a long term follow-up of patients from a single center. Pituitary. 2015;18:561–67. Doi: 10.1007/s11102-014-0610-9.
8. Bell J.J., August G.P., Blethen S.L., et al. Neonatal Hypoglycemia in a Growth Hormone Registry: Incidence and Pathogenesis. J Pediatr Endocrinol Metab. 2004;17. Doi: 10.1515/JPEM.2004.17.4.629.
9. Cimador M., Catalano P., Ortolano R., et al. The inconspicuous penis in children. Nat Rev Urol. 2015;12:205–15. Doi: 10.1038/nrurol.2015.49.
10. Urzola A.V., Leger J., Czernichow P. Three Cases of Congenital Growth Hormone Deficiency with Micropenis and Hypospadias: What Does Growth Hormone Have to Do with It? Horm Re. Paediatr. 1999;51:101–4. Doi: 10.1159/000023324.
11. Karnsakul W., Sawathiparnich P., Nimkarn., et al. Anterior pituitary hormone effects on hepatic functions in infants with congenital hypopituitarism. Ann Hepatol. 2007;6:97–103. Doi: 10.1016/S1665-2681(19)31939-8.
12. Patel L., McNally R.J.Q., Harrison E., et al. Geographical Distribution of Optic Nerve Hypoplasia and Septo-optic Dysplasia in Northwest England. J Pediatr. 2006;148:85–8. Doi: 10.1016/j.jpeds.2005.07.031.
13. De Morsier G. Studies on malformation of cranio-encephalic sutures. III. Agenesis of the septum lucidum with malformation of the optic tract. Schweiz Arch Neurol Psychiatr. 1956;77(1–2): 267–92.
14. Morishima A., Aranoff G.S. Syndrome of septo-optic-pituitary dysplasia: The clinical spectrum. Brain Develop. 1986;8:233–39. Doi: 10.1016/S0387-7604(86)80075-4.
15. McCabe M.J., Alatzoglou K.S., Dattani MT.. Septo-optic dysplasia and other midline defects: The role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab. 2011;25:115–24. Doi: 10.1016/j.beem.2010.06.008.
16. Ribeiro L.A., Quiezi R.G., Nascimento A., et al. Holoprosencephaly and holoprosencephaly‐like phenotype and GAS1 DNA sequence changes: Report of four Brazilian patients. Am J Med Gen. 2010;Pt A(152A):1688–94. Doi: 10.1002/ajmg.a.33466.
17. Kelberman D. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans. J Clin Investig. 2006:JCI28658. Doi: 10.1172/JCI28658.
18. Dattani M.T., Martinez-Barbera J.-P., Thomas P.Q., et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998;19:125–33. doi: 10.1038/477.
19. Ragge N.K., Brown A.G., Poloschek C.M., et al. Heterozygous Mutations of OTX2 Cause Severe Ocular Malformations. Am J Human Genet. 2005;76:1008–22. Doi: 10.1086/430721.
20. Abe Y., Oka A., Mizuguchi M., et al. EYA4, deleted in a case with middle interhemispheric variant of holoprosencephaly, interacts with SIX3 both physically and functionally. Hum Mutat. 2009;30:E946–55. doi: 10.1002/humu.21094.
21. Paulussen A.D., Schrander-Stumpel C.T., Tserpelis D.C.J., et al. The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes. Eur J Hum Genet. 2010;18:999–1005. Doi: 10.1038/ejhg.2010.70.
22. Hermesz E., Mackem S., Mahon K.A. . a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development. 1996;122:41–52. Doi: 10.1242/dev.122.1.41.
23. Dateki S., Kosaka K., Hasegawa K., et al. Heterozygous Orthodenticle Homeobox 2 Mutations Are Associated with Variable Pituitary Phenotype. J. Clin. Endocrinol. Metab. 2010;95:756–64. Doi: 10.1210/jc.2009-1334.
24. Wyatt A., Bakrania P., Bunyan D.J., et al. Novel heterozygous OTX2 mutations and whole gene deletions in anophthalmia, microphthalmia and coloboma. Hum Mutat. 2008;29:E278–83. Doi: 10.1002/humu.20869.
25. Tajima T., Ishizu K., Nakamura A. Molecular and Clinical Findings in Patients with LHX4 and OTX2 Mutations. Clin Pediatr Endocrinol. 2013;22:15–23. Doi: 10.1297/cpe.22.15.
26. Dateki S., Fukami M., Sato N., et al. OTX2 Mutation in a Patient with Anophthalmia, Short Stature, and Partial Growth Hormone Deficiency: Functional Studies Using the IRBP, HESX1, and POU1F1 Promoters. J Clin Endocrinol Metab. 2008;93:3697–702. Doi: 10.1210/jc.2008-0720.
27. Kelley C.G., Lavorgna G., Clark M.E., et al. The Otx2 Homeoprotein Regulates Expression from the Gonadotropin-Releasing Hormone Proximal Promoter. Mol Endocrinol. 2000;14(8):1246–56. Doi: 10.1210/mend.14.8.0509.
28. Diaczok D., Romero C., Zunich J., et al. A Novel Dominant Negative Mutation of OTX2 Associated with Combined Pituitary Hormone Deficiency. J Clin Endocrinol Metab. 2008;93:4351–59. Doi: 10.1210/jc.2008-1189.
29. Ashkenazi-Hoffnung L., Lebenthal Y., Wyatt A.W., et al. A novel loss-of-function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency. Hum Genet. 2010;127:721–29. Doi: 10.1007/s00439-010-0820-9.
30. Chassaing N., Sorrentino S., Davis E.E., et al. OTX2 mutations contribute to the otocephaly-dysgnathia complex. J Med Genet. 2012;49:373–79. Doi: 10.1136/jmedgenet-2012-100892.
31. Arnhold I.J.P., França M.M., Carvalho L.R., et al. Role of GLI2 in hypopituitarism phenotype. J. Mol. Endocrinol. 2015;54:R141–50. Doi: 10.1530/JME-15-0009.
32. Zhang Y., Dong B., Xue Y., et al. Case report: A case of Culler-Jones syndrome caused by a novel mutation of GLI2 gene and literature review. Front. Endocrinol. 2023;14:1133492. Doi: 10.3389/fendo.2023.1133492.
33. Bechtold-Dalla Pozza S., Hiedl S., Roeb J., et al. A Recessive Mutation Resulting in a Disabling Amino Acid Substitution (T194R) in the LHX3 Homeodomain Causes Combined Pituitary Hormone Deficiency. Horm. Res. Paediatr. 2012;77:41–51. Doi: 10.1159/000335929.
34 Ramzan K., Bin-Abbas B., Al-Jomaa L., et al. Two novel LHX3 mutations in patients with combined pituitary hormone deficiency including cervical rigidity and sensorineural hearing loss. BMC. Endocrinol. Disord. 2017;17:17. Doi: 10.1186/s12902-017-0164-8.
35 Jullien N., Romanet P., Philippon M., et al. Heterozygous LHX3 mutations may lead to a mild phenotype of combined pituitary hormone deficiency. Eur. J. Hum. Genet. 2019;27:216–25. Doi: 10.1038/s41431-018-0264-6.
36 Kriström B., Zdunek A.-M., Rydh A., et al. A Novel Mutation in the LIM Homeobox 3 Gene Is Responsible for Combined Pituitary Hormone Deficiency, Hearing Impairment, and Vertebral Malformations. J. Clin. Endocrinol. Metab. 2009;94:1154–61. Doi: 10.1210/jc.2008-0325.
37 Rajab A., Kelberman D., De Castro S.C.P., et al. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum. Mol. Genet. 2008;17:2150–59. Doi: 10.1093/hmg/ddn114.
38 Sobrier M.-L., Brachet C., Vié-Luton M.-P., et al. Symptomatic Heterozygotes and Prenatal Diagnoses in a Nonconsanguineous Family with Syndromic Combined Pituitary Hormone Deficiency Resulting from Two Novel LHX3 Mutations. J. Clin. Endocrinol. Metab. 2012;97:E503–9. Doi: 10.1210/jc.2011-2095.
39 Bonfig W., Krude H., Schmidt H. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck – a case report and review of the literature. Eur. J. Pediatr. 2011;170:1017–21. Doi: 10.1007/s00431-011-1393-x
40 Rochette C., Jullien N., Saveanu A., et al. Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue. PLoS ONE. 2015;10:e0126648. Doi: 10.1371/journal.pone.0126648.
41 Cohen E., Maghnie M., Collot N., et al. Contribution of LHX4 Mutations to Pituitary Deficits in a Cohort of 417 Unrelated Patients. J Clin Endocrinol Metab. 2017;102:290–301. Doi: 10.1210/jc.2016-3158.
42 Dateki S., Fukami M., Uematsu A., et al. Mutation and Gene Copy Number Analyses of Six Pituitary Transcription Factor Genes in 71 Patients with Combined Pituitary Hormone Deficiency: Identification of a Single Patient with LHX4 Deletion. J Clin Endocrinol Metab. 2010;95:4043–47. Doi: 10.1210/jc.2010-0150.
43 Machinis K., Pantel J., Netchine I., et al. Syndromic Short Stature in Patients with a Germline Mutation in the LIM Homeobox LHX4. Am J Hum Genet. 2001;69:961–68. Doi: 10.1086/323764.
44 Pfaeffle R.W., Hunter C.S., Savage J.J., et al. Three Novel Missense Mutations within the LHX4 Gene Are Associated with Variable Pituitary Hormone Deficiencies. J Clin Endocrinol Metab. 2008;93:1062–71. Doi: 10.1210/jc.2007-1525.
45 Gregory L.C., Humayun K.N., Turton J.P.G., et al. Novel Lethal Form of Congenital Hypopituitarism Associated With the First Recessive LHX4 Mutation. J Clin Endocrinol Metab. 2015;100:2158–64. Doi: 10.1210/jc.2014-4484.
46 Vajravelu M.E., Chai J., Krock B., et al. Congenital Hyperinsulinism and Hypopituitarism Attributable to a Mutation in FOXA2. J Clin Endocrinol Metab. 2018;103:1042–47. Doi: 10.1210/jc.2017-02157.
47 Boda H., Miyata M., Inagaki H., et al. FOXA2 gene mutation in a patient with congenital complex pituitary hormone deficiency. Eur J Med Genet. 2019;62:103570. Doi: 10.1016/j.ejmg.2018.11.004.
48 Tsai E.A., Grochowski C.M., Falsey A.M., et al. Heterozygous Deletion of FOXA2 Segregates with Disease in a Family with Heterotaxy, Panhypopituitarism, and Biliary Atresia. Hum Mutat. 2015;36:631–37 Doi: 10.1002/humu.22786.
49 Brue T., Quentien M.-H., Khetchoumian K., et al. Mutations in NFKB2and potential genetic heterogeneity in patients with DAVID syndrome, having variable endocrine and immune deficiencies. BMC. Med Genet. 2014;15:139. Doi: 10.1186/s12881-014-0139.
50 Quentien M.-H., Delemer B., Papadimitriou D.T., et al. Deficit in Anterior Pituitary Function and Variable Immune Deficiency (DAVID) in Children Presenting with Adrenocorticotropin Deficiency and Severe Infections. J Clin Endocrinol Metab. 2012;97:E121–28. Doi: 10.1210/jc.2011-0407.
51. Cheng M.Y., Bullock C.M., Li C., et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature. 2002;417:405–10. Doi: 10.1038/417405a.
52. Lin D.C.-H., Bullock C.M., Ehlert F.J., et al. Identification and Molecular Characterization of Two Closely Related G Protein-coupled Receptors Activated by Prokineticins/Endocrine Gland Vascular Endothelial Growth Factor. J Biol Chem. 2002;277:19276–80. Doi: 10.1074/jbc.M202139200.
53. Dode C., Rondard P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front Endocrinol. 2013;4. Doi: 10.3389/fendo.2013.00019.
54. Cole L.W., Sidis Y., Zhang C., et al. Mutations in Prokineticin 2 and Prokineticin receptor 2 genes in Human Gonadotrophin-Releasing Hormone Deficiency: Molecular Genetics and Clinical Spectrum. J Clin Endocrinol Metab. 2008;93:3551–59. Doi: 10.1210/jc.2007-2654.
55. Tommiska J., Toppari J., Vaaralahti K., et al. PROKR2 mutations in autosomal recessive Kallmann syndrome. Fertil Steril. 2013;99:815–18. Doi: 10.1016/j.fertnstert.2012.11.003.
56. Reynaud R., Jayakody S.A., Monnier C., et al. PROKR2 Variants in Multiple Hypopituitarism with Pituitary Stalk Interruption. J Clin Endocrinol Metab. 2012;97:E1068–73. Doi: 10.1210/jc.2011-3056.
57. McCabe M.J., Gaston-Massuet C., Gregory L.C., et al. Variations in PROKR2 , But Not PROK2, Are Associated With Hypopituitarism and Septo-optic Dysplasia. J Clin Endocrinol Metab. 2013;98:E547–57. Doi: 10.1210/jc.2012-3067.
58. McCabe M.J., Gaston-Massuet C., Tziaferi V., et al. Novel FGF8 Mutations Associated with Recessive Holoprosencephaly, Craniofacial Defects, and Hypothalamo-Pituitary Dysfunction. J Clin Endocrinol Metab. 2011;96:E1709–18. Doi: 10.1210/jc.2011-0454.
59. Miraoui H., Dwyer A.A., Sykiotis G.P., et al. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism. Am J Hum Genet. 2013;92:725–43. Doi: 10.1016/j.ajhg.2013.04.008.
60. Goetz R., Ohnishi M., Ding X., et al. Klotho Coreceptors Inhibit Signaling by Paracrine Fibroblast Growth Factor 8 Subfamily Ligands. Mol Cell Biol. 2012;32:1944–54. Doi: 10.1128/MCB.06603-11.
61. Miraoui H., Dwyer A., Pitteloud N. Role of fibroblast growth factor (FGF) signaling in the neuroendocrine control of human reproduction. Mol Cell Endocrinol. 2011;346:37–43. Doi: 10.1016/j.mce.2011.05.042.
62. Falardeau J., Chung W.C.J., Beenken A., et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest. 2008;118:2822–31. Doi: 10.1172/JCI34538.
63. Treier M., Gleiberman A.S., O’Connell S.M., et al. Multistep signaling requirements for pituitary organogenesis in vivo. Gen Dev1998;12:1691–704. Doi: 10.1101/gad.12.11.1691.
64. Raivio T., Sidis Y., Plummer L., et al. Impaired Fibroblast Growth Factor Receptor 1 Signaling as a Cause of Normosmic Idiopathic Hypogonadotropic Hypogonadism. J Clin Endocrinol Metab. 2009;94:4380–90. Doi: 10.1210/jc.2009-0179.
65. Raivio T., Avbelj M., McCabe M.J., et al. Genetic Overlap in Kallmann Syndrome, Combined Pituitary Hormone Deficiency, and Septo-Optic Dysplasia. J Clin Endocrinol Metab. 2012;97:E694–99. Doi: 10.1210/jc.2011-2938.
66. Kioussi C., O’Connell S., St-Onge L., et al. Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc Natl Acad Sci USA. 1999;96:14378–82. Doi: 10.1073/pnas.96.25.14378.
67. Schmidt-Sidor B., Szymańska K., Williamson K., et al. Malformations of the brain in two fetuses with a compound heterozygosity for two PAX6 mutations. Folia Neuropathol. 2009;47(4):372–82.
68. Solomon B.D., Pineda‐Alvarez D.E., Balog J.Z., et al. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med Genet. 2009;Pt. A(149A):2543–46. Doi: 10.1002/ajmg.a.33081.
69. Hergott-Faure L., Borot S., Kleinclauss C., et al. Pituitary function and glucose tolerance in a family with a PAX6 mutation. Ann Endocrinol. 2012;73:510–14. Doi: 10.1016/j.ando.2012.10.001.
70. Shimo N., Yasuda T., Kitamura T., et al. Aniridia with a Heterozygous PAX6 Mutation in which the Pituitary Function was Partially Impaired. Intern. Med. 2014;53:39–42. Doi: 10.2169/internalmedicine.53.1184.
71. Nolen L.D., Amor D., Haywood A., et al. Deletion at 14q22‐23 indicates a contiguous gene syndrome comprising anophthalmia, pituitary hypoplasia, and ear anomalies. Am J Med Genet. 2006;Pt. A(140A):1711–18. Doi: 10.1002/ajmg.a.31335.
72. Bakrania P., Efthymiou M., Klein J.C., et al. Mutations in BMP4 Cause Eye, Brain, and Digit Developmental Anomalies: Overlap between the BMP4 and Hedgehog Signaling Pathways. Am J Hum Genet. 2008;82:304–19. Doi: 10.1016/j.ajhg.2007.09.023.
73. Hayashi S., Okamoto N., Makita Y., et al. Heterozygous deletion at 14q22.1–q22.3 including the BMP4 gene in a patient with psychomotor retardation, congenital corneal opacity and feet polysyndactyly. Am J Med Genet. 2008;Pt. A(146A):2905–10. Doi: 10.1002/ajmg.a.32519.
74. Reis L.M., Tyler R.C., Schilter K.F., et al. BMP4 loss-of-function mutations in developmental eye disorders including SHORT syndrome. Hum Genet. 2011;130:495–504. Doi: 10.1007/s00439-011-0968-y.
75. El Chehadeh-Djebbar S., Callier P., Masurel-Paulet A., et al. 17q21.31 microdeletion in a patient with pituitary stalk interruption syndrome. Eur J Med Genet. 2011;54:369–73. Doi: 10.1016/j.ejmg.2011.03.001.
76. Simmons G.E., Suchnicki J.E., Rak K.M., et al. MR imaging of the pituitary stalk: size, shape, and enhancement pattern. Am J Roentgenol. 1992;159:375–77. Doi: 10.2214/ajr.159.2.1632360.
77. Tauber M., Chevrel J., Diene G., et al. Long-Term Evolution of Endocrine Disorders and Effect of GH Therapy in 35 Patients with Pituitary Stalk Interruption Syndrome. Horm Res Paediatr 2005;64:266–73. doi: 10.1159/000089425.
78. Nagase T., Kikuno R., Ishikawa K., et al. Prediction of the Coding Sequences of Unidentified Human Genes. XVII. The Complete Sequences of 100 New cDNA Clones from Brain Which Code for Large Proteins in vitro. DNA Res. 2000;7:143–50. Doi: 10.1093/dnares/7.2.143.
79. Webb E.A., AlMutair A., Kelberman D., et al. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies. Brain. 2013;136:3096–105. Doi: 10.1093/brain/awt218.
80. Keith B., Adelman D.M., Simon M.C. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2 ) gene reveals partial redundancy with Arnt. Proc Natl Acad Sci USA. 2001;98:6692–97. Doi: 10.1073/pnas.121494298.
81. Hufnagel R.B., Arno G., Hein N.D., et al. Neuropathy target esterase impairments cause Oliver–McFarlane and Laurence–Moon syndromes. J Med Genet. 2015;52:85–94. Doi: 10.1136/jmedgenet-2014-102856.
82. Rainier S., Bui M., Mark E., et al. Neuropathy Target Esterase Gene Mutations Cause Motor Neuron Disease. Am J Hum Genet. 2008;82:780–85. Doi: 10.1016/j.ajhg.2007.12.018.
83. Topaloglu A.K., Lomniczi A., Kretzschmar D., et al. Loss-of-Function Mutations in PNPLA6 Encoding Neuropathy Target Esterase Underlie Pubertal Failure and Neurological Deficits in Gordon Holmes Syndrome. J Clin Endocrinol Metab. 2014;99:E2067–75. Doi: 10.1210/jc.2014-1836.
84. Bredrup C., Saunier S., Oud M.M., et al. Ciliopathies with Skeletal Anomalies and Renal Insufficiency due to Mutations in the IFT-A Gene WDR19. Am J Hum Genet. 2011;89:634–43. Doi: 10.1016/j.ajhg.2011.10.001.
85. Beales P.L., Bland E., Tobin J.L., et al. IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 2007;39:727–29. Doi: 10.1038/ng2038.
86. Lucas-Herald A.K., Kinning E., Iida A., et al. A Case of Functional Growth Hormone Deficiency and Early Growth Retardation in a Child With IFT172 Mutations. J Clin Endocrinol Metab. 2015;100:1221–24. Doi: 10.1210/jc.2014-3852.
87. Bashamboo A., Bignon-Topalovic J., Moussi N., et al. Mutations in the Human ROBO1 Gene in Pituitary Stalk Interruption Syndrome. J Clin Endocrinol Metab. 2017;102:2401–406. Doi: 10.1210/jc.2016-1095.
88. Dateki S., Watanabe S., Mishima H., et al. A homozygous splice site ROBO1 mutation in a patient with a novel syndrome with combined pituitary hormone deficiency. J Hum Genet. 2019;64:341–46. Doi: 10.1038/s10038-019-0566-8.
89. Liu Z., Chen X. A Novel Missense Mutation in Human Receptor Roundabout-1 (ROBO1) Gene Associated with Pituitary Stalk Interruption Syndrome. J Clin Res Pediatr Endocrinol. 2020;12:212–17. Doi: 10.4274/jcrpe.galenos.2019.2018.0309.
90. Kardelen A.D., Karakılıç Özturan E., et al. A Novel Pathogenic IGSF1 Variant in a Patient with GH and TSH Deficiency Diagnosed by High IGF-I Values at Transition to Adult Care. J Clin Res Pediatr Endocrinol. 2023;15:431–37. Doi: 10.4274/jcrpe.galenos.2022.2021-12-3.
91. Gregory L.C., Dattani M.T. Embryologic and Genetic Disorders of the Pituitary Gland. In: B. Kohn, eds. Pituitary Disorders of Childhood. Contemporary Endocrinology. 1st ed. Cham, Switzerland: Springer Nature; 2019. Р. 3–27.
Об авторах / Для корреспонденции
Автор для связи: Елизавета Николаевна Райкина, клинический аспирант, врач-детский эндокринолог, Национальный медицинский исследовательский центр эндокринологии, Москва, Россия; dr.raykina@mail.ru
ORCID / eLibrary SPIN:
Е.Н. Райкина (Elizaveta N. Raykina), ORCID: https://orcid.org/0009-0005-7797-5919; eLibrary SPIN: 8987-9928
М.С. Панкратова, (Maria S. Pankratova), ORCID: https://orcid.org/0000-0003-3396-8678; eLibrary SPIN: 3770-4452
О.Б. Безлепкина, (Olga B. Bezlepkina), ORCID: https://orcid.org/0000-0001-9621-5732; eLibrary SPIN: 3884-0945