ISSN 2073–4034
eISSN 2414–9128

Эндотипическая гетерогенность хронического риносинусита

Красильникова С.В., Горбунова К.В., Елисеева Т.И., Булгакова В.А.

1) Приволжский исследовательский медицинский университет, Нижний Новгород, Россия; 2) Российский научный центр хирургии имени академика Б.В. Петровского, Москва, Россия; 3) Российский национальный исследовательский медицинский университет имени Н.И. Пирогова, Москва, Россия
Хронический риносинусит (ХРС) – одно из самых распространенных хронических заболеваний респираторного тракта во всем мире. ХРС с полипами (ПХРС) характеризуется высокой частотой рецидивов, рефрактерностью к проводимой терапии и является нерешенной проблемой клинической ринологии. ПХРС представляет собой гетерогенное заболевание с множеством клинико-иммунологических вариантов. Основа патогенеза ПХРС – хроническое воспаление слизистых оболочек, ассоциированное с патологическим ремоделированием. Данное воспаление может протекать как с высоким, так и с низким уровнем ответа иммунитета 2 типа. Фокусировка на одном типе воспаления (преимущественно Т2) не отражает всей картины патогенеза. Появление новых биологических препаратов, нацеленных на «алармины» и специфические цитокины, требует глубокого понимания задействованных иммунных путей для адекватного подбора терапии и прогнозирования ответа. В литературе наблюдается быстрый рост данных о роли отдельных клеточных популяций и медиаторов, однако отсутствует целостное представление об их взаимодействиях и значимости для разных эндотипов ХРС. Систематизация этих знаний поможет выявить пробелы в исследованиях, обозначить перспективные направления для разработки диагностических биомаркеров, потенциально пригодных для таргетной биологической терапии, а также повысит эффективность персонализированного подхода к лечению пациентов с ХРС. Целью настоящего обзора является комплексный анализ и систематизация современных данных об иммунологических механизмах патогенеза ПХРС. В статье представлен обзор научной литературы. Выполнен научный поиск по теме иммунногенеза ХРС. Использованы соответствующие ключевые термины и фильтры в поисковых системах PubMed и Google Scholar.

Ключевые слова

хронический риносинусит
эндотип
эпителиальное ремоделирование

Список литературы

1. Fokkens W.J., Lund V.J., Hopkins C., et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl. 29):1–464. https://dx.doi.org/10.4193/Rhin20.600

2. Hastan D., Fokkens W.J., Bachert C., et al. Chronic rhinosinusitis in Europe--an underestimated disease. A GA(2)LEN study. Allergy. 2011;66(9):1216–23. https://dx.doi.org/10.1111/j.1398-9995.2011.02646.x

3. Bachert C., Bhattacharyya N., Desrosiers M., Khan A.H. Burden of Disease in Chronic Rhinosinusitis with Nasal Polyps. J Asthma Allergy. 2021;14:127–34. https://dx.doi.org/10.2147/JAA.S290424

4. Li X., Li J., Xu X., et al. Direct economic burden 1 year postoperation in Chinese adult patients with chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol. 2023;19(11):1419–25. https://dx.doi.org/10.1080/1744666X.2023.2246660

5. Benjamin M.R., Stevens W.W., Li N., et al. Clinical Characteristics of Patients with Chronic Rhinosinusitis without Nasal Polyps in an Academic Setting. J Allergy Clin Immunol Pract. 2019;7(3):1010–6. https://dx.doi.org/10.1016/j.jaip.2018.10.014.

6. Van Zele T., Claeys S., Gevaert P., et al. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy. 2006;61(11):1280–9. https://dx.doi.org/10.1111/j.1398-9995.2006.01225.x

7. Wang X., Sima Y., Zhao Y., et al. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. J Allergy Clin Immunol. 2023;151(2):458–68. https://dx.doi.org/10.1016/j.jaci.2022.10.010

8. Xie X., Xuan L., Zhao Y., et al. Diverse Endotypes of Chronic Rhinosinusitis and Clinical Implications. Clin Rev Allergy Immunol. 2023;65(3):420–32. https://dx.doi.org/10.1007/s12016-023-08976-y

9. Savlevich E.L., Zurochka A.V., Kurbacheva O.M., et al.

10. Kato A., Schleimer R.P., Bleier B.S. Mechanisms and pathogenesis of chronic rhinosinusitis. J. Allergy Clin. Immunol. 2022;149(5):1491–503. https://dx.doi.org/10.1016/j.jaci.2022.02.016

11. Liao B., Cao P.P., Zeng M., et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2015;70(9):1169–80. https://dx.doi.org/10.1111/all.12667

12. Krasilnikova S.V., Ovsyannikov D.Y., Eliseeva T.I., et al. Thymic Stromal Lymphopoietin as a Predictor of Hypertrophic Changes in the Nasal Mucosa in Children with Atopic Bronchial Asthma and Allergic Rhinitis. Pediatr. J named after G.N. Speransky. 2020;99(4):71–8. https://dx.doi.org/10.24110/0031-403x-2020-99-4-71-78

13. Tyler M.A., Russell C.B., Smith D.E., et al. Large-scale gene expression profiling reveals distinct type 2 inflammatory patterns in chronic rhinosinusitis subtypes. J Allergy Clin Immunol. 2017;139(3):1061–4e4. https://dx.doi.org/10.1016/j.jaci.2016.09.048

14. Punnonen J., Yssel H., de Vries J.E. The relative contribution of IL-4 and IL-13 to human IgE synthesis induced by activated CD4+ or CD8+ T cells. Allergy Clin Immunol. 1997;100(6 Pt. 1):792–801. https://dx.doi.org/10.1016/s0091-6749(97)70276-8

15. Krasilnikova S.V., Krestova E.I., Eliseeva T.I., et al. Inflammatory mediators in nasal secretion in patients with bronchial asthma and allergic rhinitis with or without polyposis and hypertrophic sinonasal mucosa. Explorat Med. 2025. https://dx.doi.org/10.37349/emed.2025.1001306

16. Merlo L.M.F., DuHadaway J.B., Montgomery J.D., et al. Differential Roles of IDO1 and IDO2 in T and B Cell Inflammatory Immune Responses. Front Immunol. 2020;11:1861. https://dx.doi.org/10.3389/fimmu.2020.01861

17. Krasil’nikova S.V., Eliseeva T.I., Tush E.V., et al. Features of local inflammation of nasal mucosa in children with bronchial asthma. Rus Otorhinolaryngol. 2020;19(3):22–30. https://dx.doi.org/10.18692/1810-4800-2020-3-22-30

18. Park S.J., Kim T.H., Jun Y.J., et al. Chronic rhinosinusitis with polyps and without polyps is associated with increased expression of suppressors of cytokine signaling 1 and 3. J Allergy Clin Immunol. 2013;131(3):772–80. https://dx.doi.org/10.1016/j.jaci.2012.12.671

19. Hao D., Wu Y., Li P., et al. An Integrated Analysis of Inflammatory Endotypes and Clinical Characteristics in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res. 2022;15:5557–65. https://dx.doi.org/10.2147/JIR.S377301

20. Turner J.H., Chandra R.K., Li P., et al. Identification of clinically relevant chronic rhinosinusitis endotypes using cluster analysis of mucus cytokines. J Allergy Clin Immunol. 2018;141(5):1895–7e7. https://dx.doi.org/10.1016/j.jaci.2018.02.002

21. Min J.Y., Kim J.Y., Sung C.M., et al. Inflammatory Endotypes of Chronic Rhinosinusitis in the Korean Population: Distinct Expression of Type 3 Inflammation. Allergy Asthma Immunol Res. 2023;15(4):437–50. https://dx.doi.org/10.4168/aair.2023.15.4.437

22. Takabayashi T., Kato A., Peters A.T., et al. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2013;132(3):584–92e4. https://dx.doi.org/10.1016/j.jaci.2013.02.003

23. Golebski K., Ros X.R., Nagasawa M., et al. IL-1beta, IL-23, and TGF-beta drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. NatCommun. 2019;10(1):2162. https://dx.doi.org/10.1038/s41467-019-09883-7

24. Delemarre T., Bochner B.S., Simon H.U., Bachert C. Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J. Allergy Clin Immunol. 2021;148(2):327–35. https://dx.doi.org/10.1016/j.jaci.2021.03.024

25. Sima Y., Wang X., Zhang L. Interaction of eosinophilic and neutrophilic inflammation in patients with chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2024;24(1):25–31. https://dx.doi.org/10.1097/ACI.0000000000000956

26. Bassiouni A., Chen P.G., Wormald P.J. Mucosal remodeling and reversibility in chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2013;13(1):4–12. https://dx.doi.org/10.1097/ACI.0b013e32835ad09e

27. Van Bruaene N., Perez-Novo C., Van Crombruggen K., De Ruyck N., et al. Inflammation and remodelling patterns in early stage chronic rhinosinusitis. Clin Exp Allergy. 2012;42(6):883–90. https://dx.doi.org/10.1111/j.1365-2222.2011.03898.x

28. Meng J., Zhou P., Liu Y., et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One. 2013;8(12):e82373. https://dx.doi.org/10.1371/journal.pone.0082373

29. Samitas K., Carter A., Kariyawasam H.H., Xanthou G. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy. 2018;73(5):993–1002. https://dx.doi.org/10.1111/all.13373

30. Wang M., Sun Y., Li C., et al. Eosinophils Correlate with Epithelial-Mesenchymal Transition in Chronic Rhinosinusitis with Nasal Polyps. ORL. J Otorhinolaryngol Relat Spec. 2022;84(1):70–80. https://dx.doi.org/10.1159/000516847

31. Li X., Huang J., Chen X., et al. IL-19 induced by IL-13/IL-17A in the nasal epithelium of patients with chronic rhinosinusitis upregulates MMP-9 expression via ERK/NF-kappaB signaling pathway. Clin Transl Allergy. 2021;11(1):e12003. https://dx.doi.org/10.1002/clt2.12003

32. Hamilton D.W. Functional role of periostin in development and wound repair: implications for connective tissue disease. J Cell Commun Signal. 2008;2(1–2):9–17. https://dx.doi.org/10.1007/s12079-008-0023-5

33. Krasilnikova S.V., Tush E.V., Frolov P.A., et al. Periostin as a Biomarker of Allergic Inflammation in Atopic Bronchial Asthma and Allergic Rhinitis (a Pilot Study). Sovrem Tekhnol. Med 2021;12(5):37–45. https://dx.doi.org/10.17691/stm2020.12.5.04

34. Wang X., Zhang N., Bo M., et al. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138(5):1344–53. https://dx.doi.org/10.1016/j.jaci.2016.05.041

35. Nakayama T., Lee I.T., Le W., et al. Inflammatory molecular endotypes of nasal polyps derived from White and Japanese populations. J Allergy Clin Immunol. 2022;149(4):1296–308.e6. https://dx.doi.org/10.1016/j.jaci.2021.11.017

36. Zurochka A.V., Egorov V.I., Kurbacheva O.M., et al. Analysis of the clinical course of chronic rhinosinusitis with nasal polyps (CRSWNP) and pathomorphological composition of nasal polyp tissue in patients living in different regions of the Russian Federation. Head and Neck Rus J. 2021;9(3). https://dx.doi.org/10.25792/hn.2021.9.3.15-24

37. Xie X., Wang P., Jin M., et al. IL-1beta-induced epithelial cell and fibroblast transdifferentiation promotes neutrophil recruitment in chronic rhinosinusitis with nasal polyps. Nat Commun. 2024;15(1):9101. https://dx.doi.org/10.1038/s41467-024-53307-0

38. Hirschberg A., Kiss M., Kadocsa E., et al. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis. EurArch. Otorhinolaryngol. 2016;273(7):1779–88. https://dx.doi.org/10.1007/s00405-015-3816-1

39. Gao Y.B., Zhang Y., Zhang L. Advance in epithelial-mesenchymal transition in chronic rhinosinusitis. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2019;54(3):231–6. https://dx.doi.org/10.3760/cma.j.issn.1673-0860.2019.03.015

40. Van Bruaene N., Perez-Novo C.A., Basinski T.M., et al. T-cell regulation in chronic paranasal sinus disease. J Allergy Clin Immunol. 2008;121(6):1435–41, 1441 e1–3. https://dx.doi.org/10.1016/j.jaci.2008.02.018

41. Tomassen P., Vandeplas G., Van Zele T., et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449–56e4. https://dx.doi.org/10.1016/j.jaci.2015.12.1324

42. Zhong B., Du J., Liu F., et al. Hypoxia-induced factor-1alpha induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2021;76(2):582–6. https://dx.doi.org/10.1111/all.14571

43. Liu C., Wang K., Liu W., et al. ALOX15(+) M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2024;154(3):592–608. https://dx.doi.org/10.1016/j.jaci.2024.04.019

44. Ефимова М.И., Красильникова С.В., Овсянников Д.Ю. и др. Влияние микробиоты слизистой оболочки носа на уровень общего иммуноглобулина E в сыворотке крови у детей с бронхиальной астмой. Педиатрия. Журнал им. Г.Н. Сперанского. 2020;99(2):56–63.

45. Du K., Zhao Y., Zhang X., et al. Staphylococcus aureus lysate induces an IgE response via memory B cells in nasal polyps. JAllergy Clin Immunol. 2024;153(3):718–31 e11. https://dx.doi.org/10.1016/j.jaci.2023.10.033

46. Vizcarra-Melgar J., Sanchez-Gomez S., Lopez-Gonzalez N., et al. Tissue eosinophil level as a predictor of control, severity, and recurrence of Chronic Rhinosinusitis with Nasal Polyps. Front Allergy. 2025;6:1549332. https://dx.doi.org/10.3389/falgy.2025.1549332

47. Turner J.H., Li P., Chandra R.K. Mucus T helper 2 biomarkers predict chronic rhinosinusitis disease severity and prior surgical intervention. Int Forum Allergy Rhinol. 2018;8(10):1175–83. https://dx.doi.org/10.1002/alr.22160

48. Castillo Vizuete J.A., Sastre J., del Cuvillo Bernal A., et al. Asthma, Rhinitis, and Nasal Polyp Multimorbidities. Arch Bronconeumol. (English Edition). 2019;55(3):146–55. https://dx.doi.org/10.1016/j.arbr.2018.12.020

49. Ho J., Bailey M., Zaunders J., et al. Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy. 2015;45(2):394–403. https://dx.doi.org/10.1111/cea.12462

50. Bachert C., Zhang N., Cavaliere C., et al. Biologics for chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2020;145(3):725–39. https://dx.doi.org/10.1016/j.jaci.2020.01.020

51. Boita M., Bucca C., Riva G., et al. Release of Type 2 Cytokines by Epithelial Cells of Nasal Polyps. J Immunol Res. 2016;2016:2643297. https://dx.doi.org/10.1155/2016/2643297

52. Nemati S., Keihanian F., Saeidinia A., Bakhshaei M. Effect Of Bevacizumab On Growth Of Human Nasal Polyposis In Vitro; An Off-Label Use Of Anti-Angiogenic Agent For Nasal Polyposis Treatment. Drug Des Devel Ther. 2019;13:3383-9. https://dx.doi.org/10.2147/DDDT.S219724

53. Ko D.Y., Shin J.M., Um J.Y., et al. Rapamycin inhibits transforming growth factor beta 1 induced myofibroblast differentiation via the phosphorylated-phosphatidylinositol 3-kinase mammalian target of rapamycin signal pathways in nasal polyp-derived fibroblasts. Am J Rhinol Allergy. 2016;30(6):211–7. https://dx.doi.org/10.2500/ajra.2016.30.4389

54. Maxfield A.Z., Landegger L.D., Brook C.D., et al. Periostin as a Biomarker for Nasal Polyps in Chronic Rhinosinusitis. Otolaryngol Head Neck Surg. 2018;158(1):181–6. https://dx.doi.org/10.1177/0194599817737967

55. Sato T., Ikeda H., Murakami K., et al. Periostin is an aggravating factor and predictive biomarker of eosinophilic chronic rhinosinusitis. Allergol Int. 2023;72(1):161–8. https://dx.doi.org/10.1016/j.alit.2022.08.006

56. Park S.K., Jin Y.D., Park Y.K., et al. IL-25-induced activation of nasal fibroblast and its association with the remodeling of chronic rhinosinusitis with nasal polyposis. PLoS One. 2017;12(8):e0181806. https://dx.doi.org/10.1371/journal.pone.0181806

57. Yang H.W., Park J.H., Shin J.M., et al. CHI3L1 on fibrinolytic system imbalance in chronic rhinosinusitis with nasal polyp. Front Immunol. 2024;15:1410948. https://dx.doi.org/10.3389/fimmu.2024.1410948

58. Jo A., Choi T.G., Han J.Y., et al. Age-Related Increase of Collagen/Fibrin Deposition and High PAI-1 Production in Human Nasal Polyps. Front Pharmacol. 2022;13:845324. https://dx.doi.org/10.3389/fphar.2022.845324

59. Cao P.P., Wang B.F., Norton J.E., et al. Studies on activation and regulation of the coagulation cascade in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2022;150(2):467–76e1. https://dx.doi.org/10.1016/j.jaci.2022.02.

60. Takabayashi T., Imoto Y., Sakashita M., et al. Nattokinase, profibrinolytic enzyme, effectively shrinks the nasal polyp tissue and decreases viscosity of mucus. Allergol Int. 2017;66(4):594–602. https://dx.doi.org/10.1016/j.alit.2017.03.007

61. Stein E., Schneider A.L., Harmon R., et al. Persistent discharge or edema after endoscopic sinus surgery in patients with chronic rhinosinusitis is associated with a type 1 or 3 endotype. Int Forum Allergy Rhinol. 2023;13(1):15–24. https://dx.doi.org/10.1002/alr.23042

62. Wynn T.A. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210. https://dx.doi.org/10.1002/path.2277

63. Ball S.L., Mann D.A., Wilson J.A., Fisher A.J. The Role of the Fibroblast in Inflammatory Upper Airway Conditions. Am J Pathol. 2016;186(2):225–33. https://dx.doi.org/10.1016/j.ajpath.2015.09.020

64. Nonaka M., Ogihara N., Fukumoto A., et al. Nasal polyp fibroblasts produce MIP-3alpha in response to toll-like receptor ligands and cytokine stimulation. Rhinology. 2010;48(1):41–6. https://dx.doi.org/10.4193/Rhin09.019

65. Seshadri S., Rosati M., Lin D.C., et al. Regional differences in the expression of innate host defense molecules in sinonasal mucosa. J Allergy Clin Immunol. 2013;132(5):1227–30e5. https://dx.doi.org/10.1016/j.jaci.2013.05.042

66. Tan B.K., Klingler A.I., Poposki J.A., et al. Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J Allergy Clin Immunol. 2017;139(2):699–703.e7. https://dx.doi.org/10.1016/j.jaci.2016.06.063

67. Sedaghat A.R., Phillips K.M. Chronic rhinosinusitis disease control: a review of the history and the evidence. Expert Rev Clin Immunol. 2023;19(8):903–10. https://dx.doi.org/10.1080/1744666X.2023.2229027

68. Haloob N., Karamali K., Hopkins C. The Role of Biologics in the Treatment of Chronic Rhinosinusitis. BioDrugs. 2023;37(4):477–87. https://dx.doi.org/10.1007/s40259-023-00602-9

69. Patel G.B., Kudlaty E.A., Guo A., et al. Impact of type 2 targeting biologics on acute exacerbations of chronic rhinosinusitis. Allergy Asthma Proc. 2021;42(5):417–24. https://dx.doi.org/10.2500/aap.2021.42.210058

70. Alska E., Laszczych D., Napiorkowska-Baran K., et al. Advances in Biologic Therapies for Allergic Diseases: Current Trends, Emerging Agents, and Future Perspectives. J Clin Med. 2025;14(4). https://dx.doi.org/10.3390/jcm14041079

71. Bousquet J., Shamji M.H., Anto J.M., et al. Patient-centered digital biomarkers for allergic respiratory diseases and asthma: The ARIA-EAACI approach - ARIA-EAACI Task Force Report. Allergy. 2023;78(7):1758–76. https://dx.doi.org/10.1111/all.15740

Об авторах / Для корреспонденции

С.В. Красильникова, к.м.н., доцент кафедры болезней уха, горла и носа, Приволжский исследовательский медицинский университет, Нижний Новгород, Россия; mashkovasv@mail.ru, ORCID: https://orcid.org/0000-0001-6153-6691
К.В. Горбунова, аспирант кафедры госпитальной педиатрии, Приволжский исследовательский медицинский университет, Нижний Новгород, Россия; ksenya.gorbunova@mail.ru, ORCID: https://orcid.org/0000-0003-4985-1546
Т.И. Елисеева, д.м.н., доцент, профессор кафедры госпитальной педиатрии, Приволжский исследовательский медицинский университет, Нижний Новгород, Россия; eliseevati@yandex.ru, ORCID: https://orcid.org/0000-0002-1769-3670
Виля Ахтямовна Булгакова, д.м.н., зав. отделом научно-информационного развития НИИ педиатрии и охраны здоровья детей НКЦ № 2, Российский научный центр хирургии имени академика Б.В. Петровского; профессор кафедры факультетской педиатрии педиатрического факультета, Российский национальный исследовательский медицинский университет им. Н.И. Пирогова, Москва, Россия; irvilbulgak@mail.ru,
ORCID: https://orcid.org/0000-0003-4861-0919 (автор, ответственный за переписку)

Также по теме