ISSN 2073–4034
eISSN 2414–9128

Легочная сенесценция (старение): дискуссионные вопросы

Бабак С.Л., Горбунова М.В., Карнаушкина К.М.

1 Российский университет медицины, Москва, Россия 2 Российский университет дружбы народов им. Патриса Лумумбы (РУДН), Москва, Россия
В наши дни происходит стремительный рост числа пациентов пожилого возраста, требующий значительного расширения наших представлений об основах «биологии старения», или сенесценции. Легочная система состоит из уникального набора клеток различного типа, которые на протяжении всей человеческой жизни подвергаются постоянному химическому, механическому, биологическому, иммунологическому, ксенобиотическому стрессам. До настоящего времени остаются малопонятными механизмы сенесценции легких, причины увеличения рисков паренхиматозных легочных заболеваний, смертельных респираторных инфекций, первичного рака легких среди пациентов старшей возрастной группы. В настоящем обзоре мы постарались представить в форме научного обзора с дискуссией молекулярные и клеточные механизмы старения легкого, особенно предрасполагающие к развитию легочных заболеваний.

Ключевые слова

биологии старения
легочная сенесценция
ксенобиотический стресс

Список литературы

1. Dzau V.J., Inouye S.K., Rowe J.W., et al. Enabling Healthful Aging for All - The National Academy of Medicine Grand Challenge in Healthy Longevity. N Engl J Med. 2019 Oct 31;381(18):1699–701. Doi: 10.1056/NEJMp1912298.

2. de Cabo R., Mattson M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med. 2019 Dec 26;381(26):2541–51. Doi: 10.1056/NEJMra1905136.

3. Longo V.D., Antebi A., Bartke A., et al. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell. 2015 Aug;14(4):497–510. Doi: 10.1111/acel.12338.

4. Lopez-Otin C., Blasco M.A., Partridge L., et al. The hallmarks of aging. Cell. 2013 Jun 6;153(6):1194–217. Doi: 10.1016/j.cell.2013.05.039.

5. Li Q., Lin Y., Liang G., et al. Autophagy and Senescence: The Molecular Mechanisms and Implications in Liver Diseases. Int J Mol Sci. 2023 Nov 28;24(23):16880. Doi: 10.3390/ijms242316880.

6. De Man R., McDonough J.E., Adams T.S., et al. A Multi-omic Analysis of the Human Lung Reveals Distinct Cell Specific Aging and Senescence Molecular Programs. bioRxiv

7. Schiller H.B., Montoro D.T., Simon L.M., et al. The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. Am J Respir Cell Mol Biol. 2019 Jul;61(1):31–41. Doi: 10.1165/rcmb.2018-0416TR.

8. Yang R., Xu T., Zhang L., et al. A single-cell atlas depicting the cellular and molecular features in human anterior cruciate ligamental degeneration: A single cell combined spatial transcriptomics study. Elife. 2023 Nov 16;12:e85700. Doi: 10.7554/eLife.85700.

9. Schneider J.L., Rowe J.H., Garcia-de-Alba C., et al. The aging lung: Physiology, disease, and immunity. Cell. 2021 Apr 15;184(8):1990–2019. Doi: 10.1016/j.cell.2021.03.005.

10. Angelidis I., Simon L.M., Fernandez I.E., et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun. 2019 Feb 27;10(1):963. Doi: 10.1038/s41467-019-08831-9.

11. Mayr C.H., Sengupta A., Asgharpour S., et al. Sfrp1 inhibits lung fibroblast invasion during transition to injury-induced myofibroblasts. Eur Respir J. 2024 Feb 8;63(2):2301326. Doi: 10.1183/13993003.01326-2023.

12. Kwak G., Lee D., Suk J.S. Advanced approaches to overcome biological barriers in respiratory and systemic routes of administration for enhanced nucleic acid delivery to the lung. Expert Opin Drug Deliv. 2023 Jul-Dec;20(11):1531–52. Doi: 10.1080/17425247.2023.2282535.

13. Barkauskas C.E., Cronce M.J., Rackley C.R., et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013 Jul;123(7):3025–36. Doi: 10.1172/JCI68782. Epub 2013 Jun 10.

14. Obata T., Mizoguchi S., Greaney A.M., et al. Organ Boundary Circuits Regulate Sox9+ Alveolar Tuft Cells During Post-Pneumonectomy Lung Regeneration. bioRxiv

15. Watson J.K., Sanders P., Dunmore R., et al. Distal lung epithelial progenitor cell function declines with age. Sci Rep. 2020 Jun 26;10(1):10490. Doi: 10.1038/s41598-020-66966-y.

16. Wang Y., Wei H., Song Z., et al. Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. J Ginseng Res. 2024 Jan;48(1):77–88. Doi: 10.1016/j.jgr.2023.09.002.

17. Iwasaki A., Foxman E.F., Molony R.D. Early local immune defences in the respiratory tract. Nat Rev Immunol. 2017 Jan;17(1):7–20. Doi: 10.1038/nri.2016.117.

18. Lloyd C.M., Marsland B.J. Lung Homeostasis: Influence of Age, Microbes, and the Immune System. Immunity. 2017 Apr 18;46(4):549–61. Doi: 10.1016/j.immuni.2017.04.005.

19. Shi T., Denney L., An H., et al. Alveolar and lung interstitial macrophages: Definitions, functions, and roles in lung fibrosis. J Leukoc Biol. 2021 Jul;110(1):107–14. Doi: 10.1002/JLB.3RU0720-418R.

20. Pervizaj-Oruqaj L., Selvakumar B., Ferrero M.R., et al. Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia. Nat Commun. 2024 Jan 2;15(1):87. Doi: 10.1038/s41467-023-44421-6.

21. Wilson D., Drew W., Jasper A., et al. Frailty Is Associated With Neutrophil Dysfunction Which Is Correctable With Phosphoinositol-3-Kinase Inhibitors. J Gerontol A Biol Sci Med Sci. 2020 Nov 13;75(12):2320–25. Doi: 10.1093/gerona/glaa216.

22. Elyahu Y., Hekselman I., Eizenberg-Magar I., et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci Adv. 2019 Aug 21;5(8):eaaw8330. Doi: 10.1126/sciadv.aaw8330.

23. Angelidis I., Simon L.M., Fernandez I.E., et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun. 2019 Feb 27;10(1):963. Doi: 10.1038/s41467-019-08831-9.

24. Yohannes A.M., Mullerova H., Hanania N.A., et al. Long-term Course of Depression Trajectories in Patients With COPD: A 3-Year Follow-up Analysis of the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints Cohort. Chest. 2016 Apr;149(4):916–26. Doi: 10.1016/j.chest.2015.10.081.

25. Wang Y., Guan Z.Y., Shi S.W., et al. Pick-up single-cell proteomic analysis for quantifying up to 3000 proteins in a Mammalian cell. Nat Commun. 2024 Feb 10;15(1):1279. Doi: 10.1038/s41467-024-45659-4.

26. Yang I.A., Jenkins C.R., Salvi S.S. Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir Med. 2022 May;10(5):497–511. Doi: 10.1016/S2213-2600(21)00506-3.

27. Fazleen A., Wilkinson T. Early COPD: current evidence for diagnosis and management. Ther Adv Respir Dis. 2020 Jan-Dec;14:1753466620942128.Doi: 10.1177/1753466620942128.

28. Loth D.W., Soler Artigas M., Gharib S.A., et al. Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat Genet. 2014 Jul;46(7):669–77. Doi: 10.1038/ng.3011.

29. Guo J., Huang X., Dou L., et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022 Dec 16;7(1):391. Doi: 10.1038/s41392-022-01251-0.

30. Podolanczuk A.J., Thomson C.C., Remy-Jardin M., et al. Idiopathic pulmonary fibrosis: state of the art for 2023. Eur Respir J. 2023 Apr 20;61(4):2200957. Doi: 10.1183/13993003.00957-2022.

31. Zhu H., Zhou A., Zhang M., et al. Comprehensive analysis of an endoplasmic reticulum stress-related gene prediction model and immune infiltration in idiopathic pulmonary fibrosis. Front Immunol. 2024 Jan 11;14:1305025. Doi: 10.3389/fimmu.2023.1305025.

32. Tao H., Lv Q., Zhang J., et al. Different Levels of Autophagy Activity in Mesenchymal Stem Cells Are Involved in the Progression of Idiopathic Pulmonary Fibrosis. Stem Cells Int. 2024 Feb 15;2024:3429565. Doi: 10.1155/2024/3429565.

Об авторах / Для корреспонденции

Автор для связи: Сергей Львович Бабак, врач-пульмонолог, д.м.н., доцент, профессор кафедры фтизиатрии и пульмонологии НОИ клинической медицины им. Н.А. Семашко, Российский университет медицины, Москва, Россия; sergbabak@mail.ru

ORCID / Scopus Author ID / eLibrary SPIN: 
С.Л. Бабак (S.L. Babak), ORCID: https://orcid.org/0000-0002-6571-1220; Scopus Author ID: 45560913500; eLibrary SPIN: 5213-3620; Web of Science ResearcherID: KAO-3183-2024 
М.В. Горбунова (M.V. Gorbunova), ORCID: https://orcid.org/0000-0002-2039-0072; Scopus Author ID: 45561369300 
М.А. Карнаушкина (K.M. Karnaushkina), ORCID: https://orcid.org/0000-0002-8791-2920; Scopus Author ID: 7801543452; eLibrary SPIN: 3297-8985 

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.