ISSN 2073–4034
eISSN 2414–9128

Проблемы трансплантации поджелудочной железы и роль биоинженерных материалов в долгосрочной выживаемости и функционировании островковых клеток

Булгакова С.В., Шаронова Л.А., Долгих Ю.А., Косарева О.В., Тренева Е.В., Курмаев Д.П.

Самарский государственный медицинский университет, Самара, Россия
Замена β-клеток с помощью трансплантации донорской поджелудочной железы (ПЖ) или клеточной терапии может быть решением ряда проблем, связанных с лечением пациентов с сахарным диабетом 1 типа. В статье обсуждаются проблемы трансплантации ПЖ и островковых клеток, роль внеклеточного матрикса в поддержании функциональной активности и выживании β-клеток островков ПЖ. Представлены данные о возможных источниках инсулин-продуцирующих клеток и эволюции методов трансплантации. В статье обсуждаются особенности биоматериалов для биоинженерных каркасов, направленных на защиту трансплантата от иммунных реакций реципиента, облегчение обмена жизненно важными молекулами, улучшение жизнеспособности и метаболической активности островковых клеток. Проведен анализ преимуществ и недостатков инкапсулирующих устройств различного размера, возможных решений вопроса васкуляризации трансплантата, а также перспектив применения 3D-биопечати ПЖ.

Ключевые слова

сахарный диабет
трансплантация поджелудочной железы
клеточная терапия
биоинженерия
биоинженерные каркасы
гидрогели
биопринтинг

Список литературы

1. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. Сахарный диабет. 2021; 24(S1):1–148.

2. Lin Y.-J., Mi F.-L., Lin P.-Y., et al. Strategies for Improving Diabetic Therapy via Alternative Administration Routes that Involve Stimuli-Responsive Insulin-Delivering Systems. Adv Drug Deliv Rev. 2019;139:71–82. Doi: 10.1016/j.addr.2018.12.001.

3. Shrestha, P., Regmi, S., Jeong, J.-H. Injectable Hydrogels for Islet Transplantation: A Concise Review. J Pharm Investig. 2020;50(1):29–45. Doi: 10.1007/s40005-019-00433-3.

4. Gruessner A.C., Gruessner R.W. Long-term outcome after pancreas transplantation: a registry analysis. Curr Opin Organ Transplant. 2016;21:377–85. Doi: 10.1097/MOT.0000000000000331.

5. Niclauss N., Meier R., Bedat B., et al. Beta-Cell replacement: pancreas and islet cell transplantation. Endocr Dev. 2016;31:146–62. Doi: 10.1159/000439412

6. Shapiro A.M., Lakey J.R., Ryan E.A., et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–38. Doi: 10.1056/NEJM200007273430401.

7. Gamble A., Pepper A.R., Bruni A., Shapiro A.M.J. The journey of islet cell transplantation and future development. Islets. 2018;10:80–94. Doi: 10.1080/19382014.2018.1428511.

8. Vantyghem M.C., de Koning E.J.P., Pattou F., Rickels M.R. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet. 2019;394:1274–85. Doi: 10.1016/S0140-6736(19)31334-0.

9. Rodriguez-Diaz R., Caicedo A. Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 2014;28(5):745–56. Doi: 10.1016/j.beem.2014.05.002.

10. Arrojo e Drigo R., Ali Y., Diez J., et al. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia. 2015;58:2218–28. Doi: 10.1007/s00125-015-3699-0.

11. Aamodt K.I., Powers A.C. Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab. 2017;19(Suppl 1):124–36. Doi: 10.1111/dom.13031.

12. Parnaud G., Lavallard V., Bedat B., et al. Cadherin Engagement Improves Insulin Secretion of Single Human β-Cells. Diabetes. 2015;64(3):887–896. Doi: 10.2337/db14-0257.

13. Баранов С.А., Нечаев В.М. Поджелудочная железа как единый функционально взаимосвязанный орган. Медицинский Совет. 2017;(11):148–51.

14. Narayanan S., Loganathan G., Dhanasekaran M., et al. Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant. 2017;7(2):117–28. Doi: 10.5500/wjt.v7.i2.117.

15. Phelps E., Cianciaruso C., Santo-Domingo J., et al. Advances in pancreatic islet monolayer culture on glass surfaces enable super-resolution microscopy and insights into beta cell ciliogenesis and proliferation. Sci Rep. 2017;7:45961 Doi: 10.1038/srep45961.

16. Riopel M., Krishnamurthy M., Li J., et al. Conditional β1-integrin-deficient mice display impaired pancreatic β cell function. J Pathol. 2011;224(1):45–55. Doi: 10.1002/path.2849.

17. Wassmer C., Lebreton F., Bellofatto K., et al. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int. 2020;33:1577–88. Doi: 10.1111/tri.13721.

18. Lammert E., Thorn P. The Role of the Islet Niche on Beta Cell Structure and Function. J Mol Biol. 2020;432(5):1407–18. Doi: 10.1016/j.jmb.2019.10.032.

19. Patel S.N., Mathews C.E., Chandler R., Stabler C.L. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne). 2022;13:881525. Doi: 10.3389/fendo.2022.881525.

20. Muchkaeva I.A., Dashinimaev E.B., Artyuhov A.S., et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6(1):45–53.

21. Okita K., Yamakawa T., Matsumura Y., et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31(3):458–66. Doi: 10.1002/stem.1293.

22. Xue Y., Cai X., Wang L., et al. Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One. 2013;8(8):e70573. Doi: 10.1371/journal.pone.0070573.

23. Ariyachet C., Tovaglieri A., Xiang G., et al. Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell. 2016;18:410–21. Doi: 10.1016/j.stem.2016.01.003.

24. Lysy P.A., Weir G.C., Bonner-Weir S. Making β cells from adult cells within the pancreas. Curr Diab Rep. 2013;13:695–703. Doi: 10.1007/s11892-013-0400-1.

25. Itakura G., Kawabata S., Ando M., et al. Fail-Safe System against Potential Tumorigenicity after Transplantation of IPSC Derivatives. Stem Cell Rep. 2017;8:673–84. Doi: 10.1016/j.stemcr.2017.02.003.

26. Maoz B., Herland A., FitzGerald E., et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018;36:865–874. Doi: 10.1038/nbt.4226.

27. Murphy S., Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785. Doi: 10.1038/nbt.2958.

28. Chang T.M.S. Semipermeable Microcapsules. Science. 1964;146:524–25. Doi: 10.1126/science.146.3643.524.

29. Lim F., Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980 Nov 21;210(4472):908–10. Doi: 10.1126/science.6776628.

30. Шуплецова В.В., Литвинова Л.С., Карпов А.А. и др. Инкапсуляция клеток и тканей поджелудочной железы: проблемы и пути их преодоления. Гены & Клетки. 2016;XI(1):18–23.

31. Caserto J.S., Bowers D.T., Shariati K., Ma M. Biomaterial Applications in Islet Encapsulation and Transplantation. ACS Appl. Bio Mater. 2020;3(12):8127–35. Doi: 10.1021/acsabm.0c01235.

32. Cao, H., Duan, L., Zhang, Y. et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Sig Transduct Target Ther. 2021;6:426. Doi: 10.1038/s41392-021-00830-x.

33. Lin P Ma S, Wang X, Zhou F. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater. 20155;27(12):2054–59. Doi: 10.1002/adma.201405022.

34. Wu F., Pang Y., Liu J. Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nat Commun. 2020;11(1):4502. Doi: 10.1038/s41467-020-18308-9.

35. Zamboni F., Collins M.N. Cell Based Therapeutics in Type 1 Diabetes Mellitus. Int J Pharmaceutics. 2017;521(1–2):346–356. Doi: 10.1016/j.ijpharm.2017.02.063.

36. Dalheim M. O., Vanacker J., Najmi M.A., et al. Efficient functionalization of alginate biomaterials. Biomaterials. 2016;80:146-156. Doi: 10.1016/j.biomaterials.2015.11.043.

37. Espona-Noguera A., Ciriza J., Canibano-Hernandez A., et al. Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus. Int J Biol Macromol. 2018;107(Pt A):1261–69. Doi: 10.1016/j.ijbiomac.2017.09.103.

38. Bai X., Pei Q., Pu C., et al. Multifunctional Islet Transplantation Hydrogel Encapsulating A20 High-Expressing Islets. Drug Des Devel Ther. 2020;14:4021–27. Doi: 10.2147/DDDT.S273050.

39. Knobeloch T., Abadi S.E.M., Bruns J., et al. Injectable Polyethylene Glycol Hydrogel for Islet Encapsulation: an in vitro and in vivo Characterization. Biomed Phys Eng Express. 2017;3:035022. Doi: 10.1088/2057-1976/aa742b.

40. Lin C.C., Raza A., Shih H. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials. 2011;32(36):9685–95. Doi: 10.1016/j.biomaterials.2011.08.083.

41. Кузнецова В.С., Васильев А.В., Григорьев Т.Е. и др. Перспективы использования гидрогелей в качестве основы для отверждаемых костно-пластических материалов. Стоматология. 2017;96(6):68–74.

42. Hogrebe N.J., Reinhardt J.W., Gooch K.J. Biomaterial microarchitecture: a potent regulator of individual cell behavior and multicellular organization. J Biomed Mater Res A. 2017;105(2):640–61. Doi: 10.1002/jbm.a.35914.

43. Kratochvil M.J., Seymour A.J., Li T.L., et al. Engineered materials for organoid systems. Nat Rev Mater. 2019;4(9):60622. Doi: 10.1038/s41578-019-0129-9.

44. Wang J.K., Cheam N.M.J., Irvine S.A., et al. Interpenetrating Network of Alginate-Human Adipose Extracellular Matrix Hydrogel for Islet Cells Encapsulation. Macromol Rapid Commun. 2020;41(21):2000275–76. Doi: 10.1002/marc.202000275.

45. Bellofatto K., Moeckli B., Wassmer C.H., et al. Bioengineered Islet Cell Transplantation. Curr Transpl Rep. 2021;8:57–66. Doi: 10.1007/s40472-021-00318-1.

46. Primavera R., Kevadiya B.D., Swaminathan G., et al. Emerging Nano- and Micro-Technologies Used in the Treatment of Type-1 Diabetes. Nanomaterials (Basel). 2020;10(4):789. Doi: 10.3390/nano10040789.

47. Opara A., Jost A., Dagogo-Jack S., Opara E.C.Islet cell encapsulation–Application in diabetes treatment. Experimental Biology and Medicine. 2021;246(24):2570-2578. Doi: 10.1177/15353702211040503.

48. Daly A.C., Riley L., Segura T., Burdick J.A. Hydrogel Microparticles for Biomedical Applications. Nat Rev Mater. 2020;5(1):20–43. Doi: 10.1038/s41578-019-0148-6.

49. Hu S., Martinez-Garcia F.D., Moeun B.N., et al. An Immune Regulatory 3D-Printed Alginate-Pectin Construct for Immunoisolation of Insulin Producing β-cells. Mater Sci Eng. 2021;123:112009. Doi: 10.1016/j.msec.2021.112009.

50. Laporte C., Tubbs E., Pierron M., et al. Improved human islets’ viability and functionality with mesenchymal stem cells and arg-gly-asp tripeptides supplementation of alginate micro-encapsulated islets in vitro. Biochem Biophys Res Commun. 2020;528(4):650–57. Doi: 10.1016/j.bbrc.2020.05.107.

51. Kwiatkowski A.J., Stewart J.M., Cho J.J., et al. Nano and Microparticle Emerging Strategies for Treatment of Autoimmune Diseases: Multiple Sclerosis and Type 1 Diabetes. Adv Healthc Mater. 2020;9(11):2000164–11. Doi: 10.1002/adhm.202000164.

52. Youn W., Kim J.Y., Park J., et al. Single-Cell Nanoencapsulation: From Passive to Active Shells. Adv Mater. 2020;32(35):e1907001. Doi: 10.1002/adma.201907001.

53. Krol S., Baronti W., Marchetti P. Nanoencapsulated Human Pancreatic Islets for β-cell Replacement in Type 1 Diabetes. Nanomedicine. 2020;15(18):1735–38. Doi: 10.2217/nnm-2020-0166.

54. Toni T. De., Stock A.A., Devaux F., et al. Parallel evaluation of polyethylene glycol conformal coating and alginate microencapsulation as immunoisolation strategies for pancreatic islet transplantation. Front Bioeng Biotechnol. 2022;10:886483. Doi: 10.1016/j.lpm.2022.104139.

55. Syed F., Bugliani M., Novelli M., et al. Conformal Coating by Multilayer Nano-Encapsulation for the Protection of Human Pancreatic Islets: In-Vitro and In-Vivo Studies. Nanomedicine: Nanotechnol Biol Med. 2018;14(7):2191–203. Doi: 10.1016/j.nano.2018.06.013.

56. Desai T., Shea L.D. Advances in Islet Encapsulation Technologies. Nat Rev Drug Discov. 2017;16(5):338–50. Doi: 10.1038/nrd.2016.232.

57. Joao Paulo M. C. M., Leuckx G., Sterkendries P., et al. Human Multipotent Adult Progenitor Cells Enhance Islet Function and Revascularisation when Co-transplanted as a Composite Pellet in a Mouse Model of Diabetes. Diabetologia. 2016;60:134–12. Doi: 10.1007/s00125-016-4120-3.

58. Mohamed-ahmed S., Fristad I., Suliman S., et al. “Adipose-Derived and Bone Marrow Mesenchymal Stem Cells: A Donor-Matched Comparison”. Stem Cel Res Ther. 2018;9(1):168. Doi: 10.1186/s13287-018-0914-1.

59. Nour S., Imani R., Chaudhry G.R., Sharifi A.M. Skin Wound Healing Assisted by Angiogenic Targeted Tissue Engineering: A Comprehensive Review of Bioengineered Approaches. J Biomed Mater Res. 2020;109:453–478. Doi: 10.1002/jbm.a.37105.

60. Toftdal M.S., Taebnia N., Kadumudi F.B., et al. Oxygen Releasing Hydrogels for Beta Cell Assisted Therapy. Int J Pharm. 2021;602:120595. Doi: 10.1016/j.ijpharm.2021.120595.

61. Wang L.-H., Ernst A. U., Flanders J. A., et al. An Inverse-Breathing Encapsulation System for Cell Delivery. Sci Adv. 2021;7(20):eabd5835. Doi: 10.1126/sciadv.abd5835.

62. Ribeiro D., Kvist A.J., Wittung-Stafshede P., et al. 3D-Models of Insulin-Producing β-Cells: from Primary Islet Cells to Stem Cell-Derived Islets. Stem Cell Rev Rep. 2018;14(2):177–88. Doi: 10.1007/s12015-017-9783-8.

63. Klak M., Kowalska P., Dobrzanski T., et al. Bionic Organs: Shear Forces Reduce Pancreatic Islet and Mammalian Cell Viability during the Process of 3D Bioprinting. Micromachines (Basel). 2021;12(3):304. Doi: 10.3390/mi12030304.

64. Leberfinger A.N., Ravnic D.J., Dhawan A., Ozbolat I.T. Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Transl Med. 2017;6(10):1940–48. Doi: 10.1002/sctm.17-0148.

65. Хесуани Ю.Дж., Сергеева Н.С., Миронов В.А. и др. Введение в 3D-биопринтинг: история формирования направления, принципы и этапы биопечати. Гены и клетки. 2018;13(3):38–45.

66. Melchels F.P., Feijen J., Grijpma D.W. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–30. Doi: 10.1016/j.biomaterials.2010.04.050.

67. Lanza R.P., Chung H.Y., Yoo J.J., et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20:689–96. Doi: 10.1038/nbt703.

68. Lebreton F., Bellofatto K., Wassmer C.H., et al. Shielding islets with human amniotic epithelial cells enhances islet engraftment and revascularization in a murine diabetes model. Am J Transplant. 2020;20(6):1551–61. Doi: 10.1111/ajt.15812.

69. Marchioli G., van Gurp L., van Krieken P.P., et al. Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication. 2015;7:025009. Doi: 10.1088/1758-5090/7/2/025009.

70. Duin S., Schutz K., Ahlfeld T., et al. 3D Bioprinting of functional islets of Langerhans in an alginate/methylcellulose hydrogel blend. Adv Health Mater. 2019;8:e1801631. Doi: 10.1002/adhm.201801631.

71. Farina M., Ballerini A., Fraga D.W., et al. 3D Printed vascularized device for subcutaneous transplantation of human islets. Biotechnol J. 2017;12. Doi: 10.1002/biot.201700169.

72. Liu X., Carter S.D., Renes M.J., et al. Development of a coaxial 3D printing platform for biofabrication of implantable islet-containing constructs. Adv Health Mater. 2019;8:e1801181. Doi: 10.1002/adhm.201801181.

73. Польские учёные напечатали первую в мире бионическую поджелудочную железу с сосудами / Хабр

74. Academia and business to develop 3D printed pancreas for testing diabetes medication - Med-Tech Innovation.

Об авторах / Для корреспонденции

Автор для связи: Людмила Александровна Шаронова, к.м.н., доцент кафедры эндокринологии и гериатрии, Самарский государственный медицинский университет, Самара, Россия; l.a.sharonova@samsmu.ru

ORCID:
Булгакова С.В. (Svetlana V. Bulgakova), https://orcid.org/0000-0003-0027-1786 
Шаронова Л.А. (Lyudmila A. Sharonova), https://orcid.org/0000-0001-8827-4919 
Долгих Ю.А. (Yuliya A. Dolgikh), https://orcid.org/0000-0001-6678-6411  
Косарева О.В. (Olga V. Kosareva), https://orcid.org/0000-0002-5754-1057 
Тренева Е.В. (Ekaterina V. Treneva), https://orcid.org/0000-0003-0097-7252 
Курмаев Д.П. (Dmitry P. Kurmaev), https://orcid.org/0000-0003-4114-5233 

Также по теме

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.