Проблемы ведения пациентов с ХОБЛ в условиях постпандемических волн COVID-19
Пациенты с хронической обструктивной болезнью легких (ХОБЛ) относятся к группе высокого риска в отношении неблагоприятных исходов COVID-19. Для ответа на вопрос, почему пациенты с ХОБЛ подвержены тяжелому течению COVID-19, эксперты предлагают обратиться к изучению различных аспектов, включая экспрессию ангиотензинпревращающего фермента 2-го типа (АПФ2), курение, врожденную иммунную дисрегуляцию, приобретенные нарушения иммунного статуса у пациентов с ХОБЛ. С другой стороны, риски для пациентов с ХОБЛ повышаются за счет характерных особенностей патогенеза COVID-19, таких как гипоксемия на фоне поражения легочной ткани, диффузное повреждение и отек альвеол, тромботические осложнения, нарушение вентиляционно-перфузионных отношений. В условиях пандемии или сохраняющейся значительной постпандемической заболеваемости COVID-19 важно обеспечить полноценное фармакологическое лечение ХОБЛ для предотвращения развития любого обострения заболевания, в т.ч. осложнений, развивающихся на фоне инфицирования вирусом SARS-CoV-2. При развитии обострения ХОБЛ следует соблюдать терапевтические рекомендации, которые не теряют актуальности и во время пандемии COVID-19. Несколько классов препаратов рекомендовано для скорейшего устранения симптомов обострения и снижения риска тяжелого течения и осложнений, к ним относятся в первую очередь бронходилататоры, глюкококортикостероиды, антибиотики, а также мукоактивные препараты. Муколитики применяются для улучшения мукоцилиарного клиренса при ХОБЛ, кроме того, обладают антиоксидантными и противовоспалительными свойствами. Муколитическая терапия не является первостепенной фармакологической опцией при ведении пациента с обострением ХОБЛ, однако добавление эффективного муколитика, такого как N-ацетилцистеин, может приводить не только к снижению вязкости бронхиального секрета и улучшению его экспекторации, но и к уменьшению клинических симптомов, увеличению функциональных показателей. Кроме того, терапия N-ацетилцистеином может снижать риск будущих обострений ХОБЛ.Белоцерковская Ю.Г., Романовских А.Г., Смирнов И.П.
Ключевые слова
Список литературы
1. Singh M.K., Mobeen A., Chandra A., Joshi S., Ramachandran S. A meta-analysis of comorbidities in COVID-19: which diseases increase the susceptibility of SARS-CoV-2 infection? Comput Biol Med. 2021;130:104219. Doi: 0.1016/j.compbiomed.2021.104219.
2. Guan W.J., Liang W.H., Zhao Y., et al Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. Doi: 10.1183/13993003.00547-2020.
3. Chen N., Zhou M., Dong X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–13. Doi: 10.1016/S0140-6736(20)30211-7.
4. Cai Q., Huang D., Ou P., et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy. 2020;75:1742–52. Doi: 10.1111/all.14309.
5. Wan S., Xiang Y., Fang W., et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J Med Virol. 2020;92:797–806. Doi: 10.1002/jmv.25783.
6. Wang D., Hu B., Hu C., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–69. Doi: 10.1001/jama.2020.1585.
7. Liang W., Guan W., Chen R., et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020; 21:335–37. Doi: 10.1016/S1470-2045(20)30096-6.
8. Dessie Z.G., Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021;21(1):855. Doi: 10.1186/s12879-021-06536-3.
9. Wang L., Li X., Chen H. et al. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol. 2020;51:343–48. Doi: 10.1159/000507471.
10. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. Doi: 10.1016/S0140-6736(20)30183-5.
11. Liu K., Fang Y.Y., Deng Y., et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J. 2020;133:1025–31. Doi: 10.1097/CM9.0000000000000744.
12. Global Strategy For Prevention, Diagnosis And Management Of COPD: 2023 Report. URL: https://goldcopd.org/2023-gold-report-2.
13. Emami A., Javanmardi F., Pirbonyeh N., Akbari A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2020;8:e35.
14. Dong X., Cao Y.Y., Lu X.X., et al. Eleven faces of coronavirus disease 2019. Allergy. 2020;75:1699–709. Doi: 10.1111/all.14289.
15. Lippi G., Henry B.M. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020;167:105941. Doi: 10.1016/j.rmed.2020.105941.
16. GOLD COVID-19 Guidance. URL: https://goldcopd.org/gold-covid-19-guidance (Accessed February 26, 2023).
17. Singh D., Mathioudakis A.G., Higham A. Chronic obstructive pulmonary disease and COVID-19: interrelationships. Curr Opin Pulm Med. 2022;28(2):76–83. Doi: 10.1097/MCP.0000000000000834.
18. Sun S.-W., Qi C., Xiong X.-Z. Challenges of COPD Patients during the COVID-19 Pandemic. Pathog. 2022;11:1484. doi: /10.3390/pathogens11121484.
19. Vlahos R., Stambas J., Bozinovski S., et al. Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog. 2011;7:e1001271. Doi: 10.1371/journal.ppat.1001271.
20. Tate M.D., Ong J.D.H., Dowling J.K., et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep. 2016;6:27912. Doi: 10.1038/srep27912.
21. Channappanavar R., Fehr A.R., Zheng J., et al. IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Investig. 2019;129:3625–39. Doi: 10.1172/JCI126363.
22. Eapen M.S., Hansbro P.M., McAlinden K., et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Sci Rep. 2017;7:13392. Doi: 10.1038/s41598-017-13888-x.
23. Zhou Y., Fu B., Zheng X., et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020;7:998–1002. Doi: 10.1093/nsr/nwaa041.
24. Jafarzadeh A., Chauhan P., Saha B., et al. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: Lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 2020;257:118102. Doi: 10.1016/j.lfs.2020.118102.
25. Chappell M.C. Nonclassical renin-angiotensin system and renal function. Compr Physiol. 2012;2:2733–52. Doi: 10.1002/cphy.c120002.
26. Brake S.J., Barnsley K., Lu W., et al. Smoking Upregulates Angiotensin-Converting Enzyme-2 Receptor: A Potential Adhesion Site for Novel Coronavirus SARS-CoV-2 (Covid-19). J Clin Med. 2020, 9:841. Doi: 10.3390/jcm9030841.
27. Wan Y., Shang J., Graham R., et al. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94:e00127–20. Doi: 10.1128/JVI.00127-20.
28. Li G., He X., Zhang, L., et al. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun. 2020;112:102463. Doi: 10.1016/j.jaut.2020.102463.
29. Leung J.M., Yang C.X., Tam A., et al. ACE-2 Expression in the Small Airway Epithelia of Smokers and COPD Patients: Implications for COVID-19. Eur Respir J. 2020;55:2000688. Doi: 10.1183/13993003.00688-2020.
30. Zhao Q., Meng M., Kumar R., et al. The impact of COPD and smoking history on the severity of Covid-19: A systemic review and meta-analysis. J Med Virol. 2020;92:1915–21. Doi: 10.1002/jmv.25889.
31. Lansiaux E., Pebay P.P., Picard J.-L., Forget J. Meta-analysis: COVID-19 Disease Severity Correlates With Smoking Status. Clin Pulm Med. 2020;27:99–104. Doi:10.20944/preprints202004.0445.v2.
32. Zhang J.J., Dong, X., Cao Y.Y., et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75:1730–41. Doi: 10.1111/all.14238.
33. Hepworth M.L., Passey S.L., Seow H.J. Vlahos R. Losartan does not inhibit cigarette smoke-induced lung inflammation in mice. Sci Rep. 2019;9:15053. Doi: 10.1038/s41598-019-51504-2.
34. Groskreutz D.J., Monick M.M., Babor E.C., et al. Cigarette smoke alters respiratory syncytial virus-induced apoptosis and replication. Am J Respir Cell Mol Biol. 2009;41:189–98. Doi: 10.1165/rcmb.2008-0131OC.
35. Diao B., Wang C., Tan Y., et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11:827. Doi: 10.3389/fimmu.2020.00827.
36. Saetta M., Baraldo S., Corbino L., et al. CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(2):711–17. Doi: 10.1164/ajrccm.160.2.9812020.
37. Barcelo B., Pons J., Ferrer J.M., et al. Phenotypic characterization of T-lymphocytes in COPD: abnormal CD4+CD25+ regulatory T-lymphocyte response to tobacco smoking. Eur Respir J. 2008;31:555–62. Doi: 10.1183/09031936.00010407.
38. Weinreich U.M., Korsgaard J. Bacterial colonisation of lower airways in health and chronic lung disease. Clin Respir J. 2008;2:116–22. Doi: 10.1111/j.1752-699X.2008.00048.x.
39. Cao X. COVID-19: Immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–70. Doi: 10.1038/s41577-020-0308-3.
40. Guan W.J., Ni Z.Y., Hu Y., et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;328:1708–20. Doi: 10.1056/NEJMoa2002032.
41. Rapid risk assessment: Coronavirus disease 2019 (COVID-19) pandemic: increased transmission in the EU/EEA and the UK – eighth update. URL: https://www.ecdc.europa.eu/en/publications-data/rapid-risk-assessment-coronavirus-disease-2019-covid-19-pandemic-eighth-update.
42. Zhang S.Q., Parker P., Ma K.Y., et al. Direct measurement of T cell receptor affinity and sequence from naive antiviral T cells. Sci Transl Med. 2016;8:341ra377. Doi: 10.1126/scitranslmed.aaf1278.
43. Marquez E.J., Chung C.H., Marches R., et al. Sexual-dimorphism in human immune system aging. Nat Commun. 2020;11:751. Doi: 10.1038/s41467-020-14396-9.
44. Zheng H.Y., Zhang M., Yang C.X., et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17:541–43. Doi: 10.1038/s41423-020-0401-3.
45. Lang M., Som A., Mendoza D.P., et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis. 2020;20:1365–66. Doi: 10.1016/S1473-3099(20)30367-4.
46. Petersson J., Glenny R.W. Gas exchange and ventilation-perfusion relationships in the lung. Eur Respir J. 2014;44:1023–41. Doi: 10.1183/09031936.00037014.
47. Kotwica A., Knights H., Mayor N., et al. Intrapulmonary shunt measured by & bedside pulse oximetry predicts worse outcomes in severe COVID-19. Eur Respir J. 2021;57(4):2003841. Doi: 10.1183/13993003.03841-2020.
48. Singh D., Long G., Cancado J.E.D., Higham A. Small airway disease in chronic obstructive pulmonary disease: insights and implications for the clinician. Curr Opin Pulm Med. 2020;26:162–68. Doi: 10.1097/MCP.0000000000000637.
49. Sakao S. Chronic obstructive pulmonary disease and the early stage of cor pulmonale: a perspective in treatment with pulmonary arterial hypertension-approved drugs. Respir Investig. 2019;57:325–29. Doi: 10.1016/j.resinv.2019.03.013.
50. Casa L.D., Deaton D.H., Ku D.N. Role of high shear rate in thrombosis. J Vasc Surg. 2015;61:1068–80. Doi: 10.1016/j.jvs.2014.12.050.
51. Bogaard H.J. Hypoxic pulmonary vasoconstriction in COPD-associated pulmonary hypertension: been there, done that? Eur Respir J. 2017;50:1191–94. Doi: 10.1183/13993003.01191-2017.
52. Spiezia L., Boscolo A., Poletto F., et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020;120:998–1000. Doi: 10.1055/s-0040-1710018.
53. De Santis V., Corona A., Vitale D., et al. Bacterial infections in critically ill patients with SARS-2-COVID-19 infection: results of a prospective observational multicenter study. Infection. 2021;14:1–10. Doi: 10.1007/s15010-021-01661-2.
54. Mallia P., Footitt J., Sotero R., et al. Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186:1117–24. Doi: 10.1164/rccm.201205-0806OC.
55. Wang Z., Maschera B., Lea S., et al. Airway host-microbiome interactions in chronic obstructive pulmonary disease. Respir Res. 2019;20:113. Doi: 10.1186/s12931-019-1085-z.
56. Deslée G., Zysman M., Burgel P.R., et al. Chronic obstructive pulmonary disease and the COVID-19 pandemic: Reciprocal challenges. Respir Med Res. 2020;78:100764. Doi: 10.1016/j.resmer.2020.100764.
57. Tal-Singer R., Crapo J.D. COPD at the time of COVID-19: a COPD foundation perspective. Chronic Obstr Pulm Dis. (Miami). 2020;7:73–5. Doi: 10.15326/jcopdf.7.2.2020.0149.
58. Docherty A.B., Harrison E.M., Green C.A., et al. ISARIC4C investigators. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO clinical characterisation protocol: prospective observational cohort study. BMJ. 2020;69:m1985. Doi: 10.1136/bmj.m1985.
59. Salvi S.S., Dhar R., Mahesh P.A., et al. COPD Management during the COVID-19 pandemic. Lung India. 2021; 38(Suppl.):S80–5. Doi: 10.4103/lungindia.lungindia_685_20.
60. Simons S.O., Hurst J.R., Miravitlles M., et al. Caring for patients with COPD and COVID-19: a viewpoint to spark discussion. Thorax. 2020;75(12):1035–39. Doi: 10.1136/thoraxjnl-2020-215095.
61. Qureshi H., Sharafkhaneh A., Hanania N.A. Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications. Ther Adv Chronic. Dis. 2014;5:212–27. Doi: 10.1177/2040622314532.
62. Evensen A.E. Management of COPD exacerbations. Am Fam Phys. 2010;81:607–13.
63. Cohen J.S., Miles M.C., Donohue J.F., Ohar J.A. Dual therapy strategies for COPD: the scientific rationale for LAMA+LABA. Int J Chron Obstruct Pulmon Dis. 2016;11:785–97. Doi: 10.2147/COPD.S54513.
64. Ferreira J., Drummond M., Pires N., et al. Optimal treatment sequence in COPD: can a consensus be found? Rev Port Pneumol. 2016;22:39–49. Doi: 10.1016/j.rppnen.2015.10.009.
65. Managing exacerbations of COPD. NICE Guidance 2019. Available on URL: https://www.nice.org.uk/guidance/ng115/chapter/Recommendations#managing-exacerbations-of-copd.
66. Viniol C., Vogelmeier C.F. Exacerbations of COPD. Eur Respir Rev. 2018;27(147):170103. Doi: 10.1183/16000617.0103-2017.
67. Белоцерковская Ю.Г., Лебедев С.С., Вакатов Д.В. и др. COVID-19: отдельные клинические аспекты через призму практического опыта. Фарматека. 2020;10:38–51.
68. Papi A., Bellettato C.M., Braccioni F., et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173:1114–21. Doi: 10.1164/rccm.200506-859OC.
69. Sethi S. Infectious etiology of acute exacerbations of chronic bronchitis. Chest. 2000;117:380s–85. Doi: 10.1378/chest.117.5_suppl_2.380s.
70. Mallia P., Contoli M., Caramori G., et al. Exacerbations of asthma and chronic obstructive pulmonary disease (COPD): focus on virus induced exacerbations. Curr Pharm Des. 2007;13:73–97. Doi: 10.2174/138161207779313777.
71. Chen K., Pleasants K.A., Pleasants R.A., et al. A systematic review and meta-analysis of sputum purulence to predict bacterial infection in COPD exacerbations. COPD. 2020;17:311–17. Doi: 10.1080/15412555.2020.1766433.
72. Soler N., Esperatti M., Ewig S., et al. Sputum purulence-guided antibiotic use in hospitalised patients with exacerbations of COPD. Eur Respir J. 2012;40:1344–53. Doi: 10.1183/09031936.00150211.
73. Miravitlles M., Moragas A., Hernandez S., et al. Is it possible to identify exacerbations of mild to moderate COPD that do not require antibiotic treatment? Chest. 2013;144:1571–77. Doi: https://doi.org/10.1378/chest.13-0518.
74. Prins H.J., Duijkers R., van der Valk P., et al. CRP-guided antibiotic treatment in acute exacerbations of COPD in hospital admissions. Eur Respir J. 2019;53:1802014. Doi: 10.1183/13993003.02014-2018.
75. Butler C.C., Gillespie D., White P., et al. C-reactive protein testing to guide antibiotic prescribing for COPD exacerbations. N Engl J Med. 2019;381:111–20. Doi: 10.1056/NEJMoa1803185.
76. Ni W., Bao J., Yang D., et al. Potential of serum procalcitonin in predicting bacterial exacerbation and guiding antibiotic administration in severe COPD exacerbations: a systematic review and meta-analysis. Infect Dis. (Lond). 2019;51:639–50. Doi: 10.1080/23744235.2019.1644456.
77. Walters J.A., Tan D.J., White C.J., et al. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2014;9:CD001288. Doi: 10.1002/14651858.CD001288.pub4.
78. Leuppi J.D., Schuetz P., Bingisser R., et al. Short-term vs conventional glucocorticoid therapy in acute exacerbations of chronic obstructive pulmonary disease: the REDUCE randomized clinical trial. JAMA. 2013;309:2223–31. Doi: 10.1001/jama.2013.5023.
79. Lindenauer P.K., Pekow P.S., Lahti M.C., et al. Association of corticosteroid dose and route of administration with risk of treatment failure in acute exacerbation of chronic obstructive pulmonary disease. JAMA. 2010;303:2359–67. Doi: 10.1001/jama.2010.796.
80. De Vries F., Bracke M., Leufkens H.G., et al. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthr Rheum. 2007;56:208–14. Doi: 10.1002/art.22294.
81. Waljee A.K., Rogers M.A., Lin P., et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017;357:j1415. Doi: 10.1136/bmj.j1415.
82. Sivapalan P., Ingebrigtsen T.S., Rasmussen D.B., et al. COPD exacerbations: the impact of long versus short courses of oral corticosteroids on mortality and pneumonia: nationwide data on 67 000 patients with COPD followed for 12 months. BMJ. Open Respir Res. 2019;6:e000407. http://dx.doi.org/10.1136/bmjresp-2019-000407
83. Walters J.A., Tan D.J., White C.J., et al. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2014;9:CD001288. Doi: 10.1002/14651858.CD001288.pub4.
84. Kiser T.H., Allen R.R., Valuck R.J., Et al. Outcomes associated with corticosteroid dosage in critically ill patients with acute exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189:1052–64. Doi: 10.1164/rccm.201401-0058OC.
85. Ikeda A., Nishimura K., Izumi T. Pharmacological treatment in acute exacerbations of chronic obstructive pulmonary disease. Drugs Aging. 1998;12:129–37. Doi: 10.2165/00002512-199812020-00005.
86. Ansari S.F., Memon M., Brohi N., et al. N-acetylcysteine in the Management of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Cureus. 2019;11:e6073. Doi: 10.7759/cureus.6073.
87. Cazzola M., Calzetta L., Page C., et al. Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev. 2015;24(137):451–61. Doi: 10.1183/16000617.00002215.
88. Malhotra D., Thimmulappa R., Navas-Acien A., et al. Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med. 2008;178:592–604. Doi: 10.1164/rccm.200803-380OC.
89. Drost E.M., Skwarski K.M., Sauleda J., et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 2005;60:293–300. Doi: 10.1136/thx.2004.027946.
90. Bridgeman M.M., Marsden M., MacNee W., et al. Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax. 1991;46:39–42. Doi: 10.1136/thx.46.1.39.
91. Santus P., Corsico A., Solidoro P., et al. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD. 2014;11(6):705–17. Doi: 10.3109/15412555.2014.898040.
92. Benrahmoune M., Therond P., Abedinzadeh Z. The reaction of superoxide radical with N-acetylcysteine. Free Radic. Biol. Med. 2000;29:775–82. Doi: 10.1016/s0891-5849(00)00380-4.
93. Kasielski M., Nowak D. Long-term administration of N-acetylcysteine decreases hydrogen peroxide exhalation in subjects with chronic obstructive pulmonary disease. Respir Med. 2001;95:448–56. Doi: 10.1053/rmed.2001.1066.
94. Aruoma O.I., Halliwell B., Hoey B.M., Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6:593–97. Doi: 10.1016/0891-5849(89)90066-x.
95. Jiang C., Zou J., Lv Q., Yang Y. Systematic review and meta-analysis of the efficacy of N-acetylcysteine in the treatment of acute exacerbation of chronic obstructive pulmonary disease. Ann Palliat Med. 2021;10(6):6564–76. Doi: 10.21037/apm-21-1138.
Об авторах / Для корреспонденции
Автор для связи: Юлия Геннадьевна Белоцерковская, к.м.н., доцент кафедры пульмонологии, Российская медицинская академия непрерывного профессионального образования, Москва, Россия; belo-yuliya@yandex.ru
ORCID:
Ю.Г. Белоцерковская (Yu.G. Belotserkovskaya), https://orcid.org/0000-0003-1224-1904
А.Г. Романовских (A.G. Romanovskikh), https://orcid.org/0000-0001-9675-7451
И.П. Смирнов (I.P. Smirnov), https://orcid.org/0000-0001-8954-5303