Нежелательные реакции детей на антимикробные препараты: ограничения метода спонтанных сообщений и возможности метода глобальных триггеров лекарственно-индуцированных состояний
Обоснование. Безопасность фармакотерапии детей с нозокомиальной инфекцией в критических состояниях является актуальной проблемой педиатрии [1]. Основной причиной нежелательных побочных реакций (НПР), связанных с применением лекарственных средств у детей, считаются антимикробные препараты (АМП) [2, 3]. Показана неэффективность традиционного метода ретроспективной регистрации спонтанных сообщений (СС) о НПР на лекарственные препараты. Даны теоретические основы для внедрения метода оценки глобальных триггеров (ГТ) лекарственно-индуцированных состояний как переход к тактике активного выявления НПР на лекарственные препараты [4–10].Власова А.В., Смирнова Е.В., Горев В.В., Сычев Д.А.
Цель исследования: сравнительный анализ распространенности и структуры НПР на АМП у детей при регистрации методами СС и ГТ лекарственно-индуцированных состояний.
Методы. Выполнен сравнительный анализ распространенности и структуры проявлений НПР на АМП у детей при регистрации методом СС ретроспективно для госпитализированных по профилю «педиатрия», в т.ч. в критических состояниях при госпитализации в ОРИТ по профилю «анестезиология–реанимация (дети)» в течение 3 лет и при активной тактике выявления методом ГТ лекарственно-индуцированных состояний на АМП в ОРИТ в течение 2 лет.
Результаты. Распространенность НПР на АМП ретроспективным методом составила 0,32 (95% ДИ: 0,22–0,33) на 100 госпитализированных по профилю «педиатрия», структура проявлений НПР по 40 случаям: аллергические реакции – 25 (62%; цефалоспорины и ванкомицин) случаев, отсутствие ожидаемого терапевтического эффекта – 7 (18%; цефтриаксон, ампициллин сульбактам, азитромицин, левофлоксацин, имипенем циластатин, тобрамицин ингаляционный, линезолид), рвота и диарея – 3 (7%; амоксициллина клавуланат), бронхоспазм – 2 (5%; колистиметат ингаляционное применение), ажитация –
1 (3%; цефтриаксон), нефротоксичность – 1 (3%; амикацин) и флебит – 1 (3%; ванкомицин) случай. Для метода СС показатель точности составил 60% (95% ДИ: 54,69–65,03), чувствительность – 90,9% (95% ДИ: 78,33–97,47) и специфичность – 55,7% (95% ДИ: 50,01–61,20). У детей в ОРИТ методом СС не было зарегистрировано ни одного НПР на АМП. В проспективном наблюдательном исследовании методом оценки ГТ распространенность проявлений НПР на АМП у детей в критических состояниях составила 1,28 (95% ДИ: 1,22–1,36) на 100 госпитализированных в ОРИТ. Структура НПР и подозреваемые лекарственные препараты для 30 детей представлены гепатотоксичностью – 19 (63%; цефоперазон сульбактам, ванкомицин, тигециклин, меропенем, флуконазол, азтреонам, цефтазидим-авибактам), нефротоксичностью – 3 (10%; ванкомицин), сердечно-сосудистыми проявлениями – 2 (7%; ципрофлоксацин, моксифлоксацин), нейротоксичностью – 2 (7%; колистиметат, позаконазол), гастроэнтерологическими проявлениями – 2 (7%) и лабораторными отклонениями (ванкомицин) – 2 (7%) ребенка. Для метода активного выявления НПР на АМП при оценке ГТ лекарственно-индуцированных состояний показатель точности составил 97% (95% ДИ: 95,86–97,37), чувствительность метода – 81,1% (95% ДИ: 64,84–92,04); специфичность – 97,0% (95% ДИ: 96,14–97,60).
Обсуждение основного результата исследования. Показаны серьезные ограничения метода СС для регистрации НПР на АМП в детском стационаре в реальной клинической практике в течение 3 лет. Распространенность НПР методом СС составила 0,32 на 100 госпитализированных. Показана его неэффективность для детей в критических состояниях на примере ОРИТ многопрофильного детского стационара. Распространенность НПР на АМП у детей в критических состояниях при применении активной тактики выявления методом ГТ лекарственно-индуцированных состояний в течение 2 лет была значительно выше и составила 1,28 на 100 госпитализированных в ОРИТ. Показатель точности метода активного выявления НПР на АМП составил 97%, метода ГТ лекарственно-индуцированных состояний – 60%.
В настоящем исследовании детей с инфекцией в критических состояниях риск развития летального исхода был выше в 6 раз в группе пациентов с проявлениями НПР на АМП по сравнению с пациентами, не имевшими НПР при активной тактике выявления методом ГТ (OR=6,0; 95% ДИ: 2,06–17,48).
Заключение. Показатель точности метода активного выявления НПР на АМП при оценке методом ГТ лекарственно-индуцированных состояний составил 97% и был выше по сравнению с показателем точности ретроспективного выявления НПР на АМП методом СС, который составил 60%. Впервые в настоящем исследовании выявлен риск развития летального исхода в 6 раз выше в группе пациентов с проявлениями НПР на АМП по сравнению с пациентами, не имевшими НПР при активной тактике выявления методом ГТ (OR=6,0; 95% ДИ: 2,06–17,48) у детей с инфекцией в критических состояниях.
Ключевые слова
Список литературы
1. Сычев Д.А., Остроумова О.Д., Переверзев А.П.Лекарственно-индуцированные заболевания. Монография. М.: Прометей, 2022. 540 с.
2. Iannelli V. 30 Most Commonly Prescribed Pediatric Medications. Medically reviewed by Jassey J.B. URL: https://www.verywellhealth.com/the-30-most-prescribed-drugs-in-pediatrics-2633435
3. Coleman J.J., Pontefract S.K. Adverse drug reactions. Clin Med (Lond). 2016 Oct;16(5):481–85. Doi: 10.7861/clinmedicine.16-5-481.
4. Clark D. Review: Expecting the Worst – a publication from the Uppsala Monitoring Centre. Drug Safety. 2010;33(12):1135–36.
5. Pandya A.D., Patel K., Rana D., et al. Global Trigger Tool: Proficient Adverse Drug Reaction Autodetection Method in Critical Care Patient Units. Indian J Crit Care Med. 2020;24(3):172–78. Doi: 10.5005/jp-journals-10071-23367.
6. Joshua L., Devi P., Guido S. Adverse drug reactions in medical intensive care unit of a tertiary care hospital. Pharmacoepidem. Drug Saf. 2009;18:639–45. Doi: 10.1002/pds.1761.
7. Deilkas E.T. GTT-metoden og uonskede hendelser som bidrar til dod i sykehus
8. Griffin F.A., Resar R.K. IHI Global Trigger Tool for Measuring Adverse Events. Cambrige: Institute for Healthcare Improvement; 2009.
9. Yuan L., Kaplowitz N. Mechanisms of drug-induced liver injury. Clin Liver Dis. 2013;17(4):507–18, vii. Doi: 10.1016/j.cld.2013.07.002.
10. Tisdale J.E., Miller D.A. Drug Induced Diseases: Prevention, Detection, and Management. 3rd Ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018. 1399 р.
11. Adriaenssens N., Coenen S., Versporten A., et al. European Surveillance of Antimicrobial Consumption (ESAC): outpatient antibiotic use in Europe (1997-2009). J Antimicrob Chemother. 2011;66(supll 6):vi3–vi12. Doi: 10.1093/jac/dkr453.
12. Shehab N., Patel P.R., Srinivasan A., Budnitz D.S.Emergency department visits for antibiotic‐associated adverse events. Clin Infect Dis. 2008;47:735–43.
13. Kiguba R., Karamagi C., Bird S.M. Antibiotic-associated suspected adverse drug reactions among hospitalized patients in Uganda: a prospective cohort study. Pharmacol Res Perspect. 2017;5(2):e00298. Doi: 10.1002/prp2.298.
14. Ramos S.F., Araujo-Neto F.C., Aires-Moreno G.T., et al. Causality and avoidability of adverse drug reactions of antibiotics in hospitalized children: a cohort study. Int J Clin Pharm. 2021;43(5):1293–301. Doi: 10.1007/s11096-021-01249-8.
15. Jolivot P.A., Pichereau, C., Hindlet, P., et al. An observational study of adult admissions to a medical ICU due to adverse drug events. Ann Int Care. 2016;6:9. Doi: 10.1186/s13613-016-0109-9.
16. Cliff-Eribo K.O., Sammons H., Choonara I. Systematic review of paediatric studies of adverse drug reactions from pharmacovigilance databases. Expert Opin Drug Saf. 2016;15:1321–28. Doi: 10.1080/14740338.2016.1221921.
17. dos Santos D.B., Coelho H.L. Adverse drug reactions in hospitalized children in Fortaleza, Brazil. Pharmacoepidemiol Drug Saf. 2006;15:635–40. Doi: 10.1002/pds.1187.
18. Rashed A.N., Wong I.C., Cranswick N., et al. Risk factors associated with adverse drug reactions in hospitalised children: international multicentre study. Eur J Clin Pharmacol. 2012;68:801–10. Doi: 10.1007/s00228-011-1183-4.
19. Clavenna A., Bonati M. Differences in antibiotic prescribing in paediatric outpatients. Arch Dis Child. 2011;96:590–95. Doi: 10.1136/adc.2010.183541.
20. Impicciatore P., Choonara I., Clarkson A., et al. Incidence of adverse drug reactions in paediatric in/out-patients: a systematic review and meta-analysis of prospective studies. Br J Clin Pharmacol. 2001;52:77–83. Doi: 10.1046/j.0306-5251.2001.01407.
21. Smyth R., Gargon E., Kirkham J., et al. Adverse drug reactions in children-a systematic review. PLoS One. 2012;7:e24061. Doi: 10.1371/journal.pone.0024061.
22. Simmons C., Georgeson E.M., Hill R.C: Adverse drug reactions: can we reduce the risk? Hosp Pharm. 1998;33:1568–76.
23. Van Kraaij D.J.W., Haagsma C.J., Go I.H., Gribnau F.W.J: Drug use and adverse drug reactions in 105 elderly patients admitted to a general medical ward. Neth J Med. 1994;44:166–73. Doi: 10.1016/0300-2977(95)90003-9.
24. Schildmeijer K., Nilsson L., Perk J., et al. Strengths and weaknesses of working with the Global TriggerTool method for retrospective record review: Focus group interviews with team members. BMJ Open. 2013;3(9):e003131. Doi: 10.1136/bmjopen-2013-003131.
25. Soop M., Fryksmark U., Koster M., Haglund B. The incidence of adverse events in Swedish hospitals: A retrospectivemedical record review study. Int J Qual Health Care. 2009;21(4):285–91. Doi: 10.1093/intqhc/mzp025.
26. Vincent C., Neale G., Woloshynowych M. Adverse events in British hospitals: Preliminary retrospective record review.BMJ. 2001;322(7285):517–19. Doi: 10.1136/bmj.322.7285.517.
27. Classen D.C., Resar R., Griffin F., et al. “Global trigger tool” shows that adverse events inhospitals may be ten times greater than previously measured. Health Aff Proj Hope. 2011;30(4):581–89. Doi: 10.1377/hlthaff.2011.0190.
28. HHS OIG. Adverse Events in Hospitals: National Incidence Among Medicare Benefiiaries. Washington; 2010.
29. Landrigan C.P., Parry G.J., Bones C.B., et al. Temporal Trends in Rates of Patient HarmResulting from Medical Care. N Engl J Med. 2010;363(22):2124–34. Doi: 10.1056/NEJMsa1004404.
30. Maglione M.A., Das L., Raaen L., et al. Safety of vaccines used for routine immunization of U.S. children: a systematic review. Pediatrics. 2014;134(2):325–37. Doi: 10.1542/peds.2014-1079.
31. 2019 National and State Healthcare-Associated Infections Progress Report URL: https://www.cdc.gov/ и AE/SAE; URL: https://www.nia.nih.gov/sites/default/files/2018-09/nia-ae-and-sae-guidelines-2018.pdf
32. Anand A.C., Nandi B., Acharya S.K., et al. INASL Task-Force on Acute Liver Failure. Indian National Association for the Study of the Liver Consensus Statement on Acute Liver Failure (Part 1): Epidemiology, Pathogenesis, Presentation and Prognosis. J Clin Exp Hepatol. 2020;10(4):339–76. Doi: 10.1016/j.jceh.2020.04.012.
33. IOM. To Err is Human: Building A Safer Health System
34. Wachter R.M. The end of the beginning: Patient safety five years after “to err is human. Health Aff Proj Hope. 2004;(SupplWeb Exclusives):W4–534-45.
35. Bates D.W., Cohen M., Leape L.L., et al. Reducing the frequency of errors in medicineusing information technology. J Am Med Inform Assoc. 2001;8(4):299–308. Doi: 10.1136/jamia.2001.0080299.
36. Brouwer K.L.R., Dukes G.E., Powell J.R. Influence of liver function on drug disposition. In: Evans W.E., Schentag J.J., Jusko W.J., editors. Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring. Vancouver, WA: Applied Therapeutics, Inc.; 1992:6-1:6-59.
37. Guideline on the Investigation of Medicinal Products in the Term and Preterm Neonate. European Medicines Agency: 2007. URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003750.pdf
38. Письмо Росздравнадзора от 16.01.2012 N 04И-11/12 «О Методических рекомендациях по осуществлению государственной функции по мониторингу безопасности лекарственных препаратов» (вместе с «Методическими рекомендациями по осуществлению Управлениями Росздравнадзора по субъектам Российской Федерации государственной функции по мониторингу безопасности лекарственных препаратов, находящихся в обращении на территории Российской Федерации», утв. Росздравнадзором 12.01.2012).
39. Berthe-Aucejo A., Nguyen P.K.H., Angoulvant F.,et al. Retrospective study of irrational prescribing in French paediatric hospital: prevalence of inappropriate prescription detected by Pediatrics: Omission of Prescription and Inappropriate prescription (POPI) in the emergency unit and in the ambulatory setting. BMJ Open. 2019;9(3):e019186. Doi: 10.1136/bmjopen-2017-019186.
40. Katarey D., Verma S. Drug-induced liver injury. Clin Med (Lond). 2016;16(Suppl 6):s104-s109. Doi: 10.7861/clinmedicine.16-6-s104.
41. Kaplowitz N., DeLeve L.D. Drug-Induced Liver Disease. Third edition. Elsevier Sci. 2013. 1693 р.
42. 19.2019 National and State Healthcare-Associated Infections Progress Report. URL: https://www.cdc.gov/
43. Matics T.J., Sanchez-Pinto L.N. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatr. 2017;171(10):e172352. Doi: 10.1001/jamapediatrics.2017.2352.
44. Prot-Labarthe S., Weil T., Angoulvant F., et al. POPI (Pediatrics: Omission of Prescriptions and Inappropriate Prescriptions): Development of a Tool to Identify Inappropriate Prescribing. PLoS One. 2014 9(6):e101171. Published online 2014 Jun 30. Doi: 10.1371/journal.pone.0101171.
45. Lindquist M. Vigibase, the WHO Global ICSR Database System: Basic Facts. Drug Inform J. 2008;42:409–19.
46. Brouwer K.L.R., Dukes G.E., Powell J.R. Influence of liver function on drug disposition. In: Evans W.E., Schentag J.J., Jusko W.J., editors. Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring. Vancouver, WA: Applied Therapeutics, Inc.;1992:6-1-6-59.
47. Lam Y.W., Banerji S., Hatfield C., Talbert R.L. Principles of drug administration in renal insufficiency. Clin Pharmacokinet 1997;32(1):30–57.
48. Shammas F.V., Dickstein K. Clinical pharmacokinetics in heart failure. An updated review. Clin Pharmacokinet. 1988;15(2):94–113.
49. Pieper J.A., Johnson K.E. Lidocaine. In: Evans W.E., Schentag J.J., Jusko W.J., editors. Applied Pharmacokinetics: Principles of Therapeutic Drug Monitoring. Vancouver, WA: Applied Therapeutics Inc.; 1992:21-1:21–37.
50. Pokrajac M., Simic D., Varagic V.M. Pharmacokinetics of theophylline in hyperthyroid and hypothyroid patients with chronic obstructive pulmonary disease. Eur J Clin Pharmacol 1987;33(5):483–86. Doi: 10.1007/BF00544240.
51. Zed P.J., Haughn C., Black K.J., et al. Medication-related emergency department visits and hospital admissions in pediatric patients: a qualitative systematic review. J Pediatr. 2013;163(2):477–83. Doi: 10.1016/j.jpeds.2013.01.042.
52. Kaushal R., Bates D.W., Landrigan C., et al. Medication errors and adverse drug events in pediatric inpatients. JAMA. 2001;285(16):2114–20. Doi: 10.1001/jama.285.16.2114. Исправлено.
53. Aljadhey H., Mahmoud M.A., Mayet A., et al. Incidence of adverse drug events in an academic hospital: a prospective cohort study. Int J Qual Heal Care. 2013;25(6):648–55. Doi: 10.1093/intqhc/mzt075.
54. Hsia Y., Lee B.R., Versporten A., et al. Use of the WHO Access, Watch, and Reserve classification to define patterns of hospital antibiotic use (AWaRe): an analysis of paediatric survey data from 56 countries. Lancet Global Health. 2019;7(7):e861-e871. Doi: 10.1016/S2214-109X(19)30071-3.
55. Ward R.M., Benjamin D., Barrett J.S., et al., the International Neonatal Consortium (INC) 2017. Safety, Dosing, and Pharmaceutical Quality for Studies that Evaluate Medicinal Products (including Biological Products) in Neonates Running Title: Study of Drugs in the Neonate. The International Neonatal Consortium (INC) is supported in part by grant number U18FD005320-01 from the U.S. Food and Drug Administration (FDA) to the Critical Path Institute (http://c-path.org) and through annual dues of member companies.
56. Zhou Y., Yang L., Liao Z., et al. Epidemiology of drug-induced liver injury in China: a systematic analysis of the Chinese literature including 21,789 patients. Eur J Gastroenterol Hepatol. 2013;25(7):825–29. Doi: 10.1097/MEG.0b013e32835f6889.
57. Kumar M., Sahni N., Shafiq N., Yaddanapudi L.N. Medication Prescription Errors in the Intensive Care Unit: Prospective Observational Study. Indian J Crit Care Med. 2022;26(5):555–59. Doi: 10.5005/jp-journals-10071-24148.
58. MedCalc Software Ltd. Diagnostic test evaluation calculator. https://www.medcalc.org/calc/diagnostic_test.php (Version 20.210; accessed December 26, 2022).
59. Glanzmann C., Frey B., Meier C.R., Vonbach P. Analysis of medication prescribing errors in critically ill children. Eur J Pediatr. 2015;174(10):1347–55. Doi: 10.1007/s00431-015-2542-4.
60. Gardner I.A., Greiner M. Receiver-operating characteristic curves and likelihood ratios: improvements over traditional methods for the evaluation and application of veterinary clinical pathology tests. Vet Clin. Pathol. 2006;35:8–17.
61. Griner P.F., Mayewski R.J., Mushlin A.I., Greenland P.Selection and interpretation of diagnostic tests and procedures. Ann Int Med. 1981;94:555–600.
62. Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36. Doi: 10.1148/radiology.143.1.7063747.
63. Mercaldo N.D., Lau K.F., Zhou X.H. Confidence intervals for predictive values with an emphasis to case-control studies. Stat Med. 2007;26:2170–83. Doi: 10.1002/sim.2677.
Об авторах / Для корреспонденции
Автор для связи: Анна Викторовна Власова, к.м.н., зав. отделом клинической фармакологии, Морозовская детская городская клиническая больница; доцент кафедры клинической фармакологии и терапии им. акад. Б.Е. Вотчала, Российская медицинская академия непрерывного профессионального образования, Москва, Россия; annavlasova75@mail.ru
ORCID / eLibrary SPIN:
А.В. Власова (A.V. Vlasova), https://orcid.org/0000-0001-5272-2070 ; eLibrary SPIN 5248-6411
Е.В. Смирнова (E.V. Smirnova), https://orcid.org/0000-0002-4382-462X ; eLibrary SPIN 2425-1341
В.В. Горев (V.V. Gorev), https://orcid.org/0000-0001-8272-3648
Д.А. Сычев (D.A. Sychev), https://orcid.org/0000-0002-4496-3680 ; eLibrary SPIN: 4525-7556