ISSN 2073–4034
eISSN 2414–9128

Обзор инновационных методов терапии псориаза

Шулепов В.В., Новиков Ю.А., Правдина О.В.

Омский государственный медицинский университет, Омск, Россия
В данной статье рассмотрены инновационные методы терапии псориаза, такие как ингибиторы янус-киназ (JAK) 2-го поколения (деукравацитиниб), гидрогель (BVn), основанные на самосборных наночастицах билирубина и ингибитора аминокислотного транспортера ASCT2 (V9302), микроигольчатый пластырь на основе гиалуроновой кислоты и двумерных неорганических соединений (максенов), используемый для введения моноклональных антител (МАТ) непосредственно в псориатический очаг, ингибиторы инфламмасомы NLRP3.
При анализе современных работ, посвященных исследованиям перспективных методов лечения псориаза, отмечены две главных тенденции: это дальнейшее исследование препаратов на основе малых молекул и разработка новых МАТ для более эффективной и доступной терапии псориаза. К тому же современные стратегии лечения нацелены на облегчение симптомов, улучшение качества жизни и предотвращение прогрессирования псориаза. Однако существующие методы ограничены побочными эффектами, резистентностью к лечению и высокими затратами. Именно эти ограничения подчеркивают актуальность поиска новых новаторских методов лечения.
Уникальность данной работы заключается в том, что в ней наиболее полно представлены вышеуказанные методы терапии и при поиске современных работ для анализа в русскоязычных статьях описывались в основном новые генно-инженерные биологические препараты (ГИБП), такие как интерфероны, интерлейкины и МАТ.

Ключевые слова

псориаз
ингибиторы янус-киназ
наночастицы
внутрикожное введение
инфламмасома

Список литературы

1. Клинические рекомендации. Псориаз. 2023. Министерство здравоохранения Российской Федерации.

2. Griffiths C.E.M., van der Walt J.M., Ashcroft D.M., et al. The global state of psoriasis disease epidemiology: a workshop report. 2017. Doi: 10.1111/bjd.15610.

3. Zarrin, A.A., Bao, K., Lupardus, P., et al. Kinase inhibition in autoimmunity and inflammation. Nature Reviews Drug Discovery. 2021;20(1):39–63. Doi: 10.1038/s41573-020-0082-8.

4. Roskoski Jr R. Deucravacitinb is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol Res. 2023;189:106642. Doi: 10.1016/j.phrs.2022.106642.

5. Wrobleski S.T., Moslin R., Lin S., et al. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem. 2019;62(20):8973–8995. Doi: 10.1021/acs.jmedchem.9b00444.

6. Mullard A. First de novo deuterated drug poised for approval. Nat Rev. Drug Discov. 2022;21(9):623–25. Doi: 10.1038/d41573-022-00139-6.

7. Madison A., Luo Y., Raimondi G., et al. Jakinibs of all trades: inhibiting cytokine signaling in immune-mediated pathologies. Pharmaceuticals. 2021;15(1):48. Doi: 10.3390/ph15010048.

8. Catlett I.M., Aras U., Hansen L., et al. First‐in-human study of deucravacitinib: A selective, potent, allosteric small‐molecule inhibitor of tyrosine kinase 2. Clin Transl Sci. 2023;16(1):151–64. Doi: 10.1111/cts.13435.

9. Xinhui N., Lai Y. Keratinocyte: A trigger or an executor of psoriasis? J Leukoc Biol. 2020;108(2):485–91. Doi: 10.1002/JLB.5MR0120-439R.

10. Jiang X., Huang S., Cai W., et al. Glutamine‐Based Metabolism Normalization and Oxidative Stress Alleviation by Self-Assembled Bilirubin/V9302 Nanoparticles for Psoriasis Treatment. Adv Healthc Mater. 2023;12(13):2203397. Doi: 10.1002/adhm.202203397.

11. Jiang X., Yao Q., Xia X., et al. Self-assembled nanoparticles with bilirubin/JPH203 alleviate imiquimod-induced psoriasis by reducing oxidative stress and suppressing Th17 expansion. Chemical Engineering Journal. 2022;431:133956. Doi: 10.101i6/j.cej.2021.133956.

12. Keum H., Kim T.W., Kim Y., et al. Bilirubin nanomedicine alleviates psoriatic skin inflammation by reducing oxidative stress and suppressing pathogenic signaling. J Control Release. 2020;325:359–69. Doi: 10.1016/j.jconrel.2020.07.015.

13. Wang W., et al. Astilbin reduces ROS accumulation and VEGF expression through Nrf2 in psoriasis-like skin disease. Biol Res. 2019;52(1):49. Doi: 10.1186/s40659-019-0255-2.

14. Scalise M., Pochini L., Console L., et al. The human SLC1A5 (ASCT2) amino acid transporter: from function to structure and role in cell biology. Front Cell Dev Biol. 2018;6:96. Doi: 10.3389/fcell.2018.00096.

15. Bullock J.L., Gillette D.D., Smith J.A. Small molecule, nanoparticle and liposomal strategies for LAT1-mediated chemotherapy delivery. Results Chem. 2023;6:101056. Doi: 10.1016/j.rechem.2023.101056.

16. Patel A.B., Tsilioni I., Weng Z., et al. TNF stimulates IL-6, CXCL 8 and VEGF secretion from human keratinocytes via activation of mTOR, inhibited by tetramethoxyluteolin. Exp Dermatol. 2018;27(2):135–43. Doi: 10.1111/exd.13461.

17. Sun L., Liu Z., Wang L., et al. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release. 2017;254:44–54. Doi: 10.1016/j.jconrel.2017.03.385.

18. Bigliardi P.L. Role of skin pH in psoriasis. Curr Probl Dermatol. 2018;54:108–14. Doi: 10.1159/000489524.

19. Orsmond A., Bereza-Malcolm L., Lynch T., et al. Skin barrier dysregulation in psoriasis. Int J Molecular Sci. 2021;22(19):10841. Doi: 10.3390/ijms221910841.

20. Wu D., Shou X., Yu Y., et al. Biologics‐Loaded Photothermally Dissolvable Hyaluronic Acid Microneedle Patch for Psoriasis Treatment. Adv Functional Mater. 2022;32(47):2205847. Doi: 10.1002/adfm.202205847.

21. Iravani S., Varma R. S. MXenes in photomedicine: Advances and prospects. Chem Commun (Camb). 2022;58(53):7336–7350. Doi: 10.1039/D2CC01694J.

22. Li H., Fan R., Zou B., et al. Roles of MXenes in biomedical applications: recent developments and prospects. J Nanobiotechnol. 2023;21(1):1–39. Doi: 10.1186/s12951-023-01809-2.

23. Jiang L., Zhou D., Yang J., et al. 2D single-and few-layered MXenes: synthesis, applications and perspectives. J Mater Chem A. 2022;10(26):13651–72. Doi: 10.1039/D2TA01572B.

24. Dai Y., Zhou J., Shi C. Inflammasome: structure, biological functions, and therapeutic targets. Med Comm. 2023;4(5):e391. Doi: 10.1002/mco2.391.

Об авторах / Для корреспонденции

Автор для связи: Шулепов Вадим Владимирович, студент лечебного факультета, VI курс, Омский государственный медицинский университет, Омск, Россия; shulepov72@icloud.com

ORCID:
В.В. Шулепов (V.V. Shulepov), https://orcid.org/0009-0005-1984-2309
Ю.А. Новиков (Yu.A. Novikov), https://orcid.org/0000-0003-0391-5372
О.В. Правдина (O.V. Pravdina), https://orcid.org/0000-0002-1804-6248

Также по теме

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.