Перспективные направления для применения внутривенного фосфомицина у детей
Обоснование: Представлен краткий обзор спектра действия фосфомицина, его эффективности при лечении детей, данные о безопасности, а также информация о текущих клинических исследованиях у детей, в которых определяются более точные фармакокинетические параметры безопасности в различных возрастных периодах. Эти исследования предоставят дополнительную информацию о расширении показаний к применению фосфомицина у детей.Власова А.В., Каменева Т.Р., Яковлев С.В.
Цель настоящего обзора: на основе имеющихся доказательных данных представить обоснованное мнение о месте фосфомицина для улучшения результатов лечения антимикробными препаратами инфекций, вызванных устойчивыми микроорганизмами у детей.
Заключение: Фосфомицин во внутривенной лекарственной форме может использоваться для лечения инфекций, вызванных устойчивыми микробами в составе комбинированной антимикробной терапии. Особенно важно отметить, что на популяции взрослых было показано увеличение выживаемости при бактериемии, вызванной K. pneumoniae с продукцией карбапенемазы KPC при применении комбинации фосфомицина и цефтазидим авибактама, по сравнению с монотерапией цефтазидимом авибактамом. Фосфомицин in vitro показал синергидную и аддитивную активность в сочетании с различными классами антибиотиков, в частности с бета-лактамами, даптомицином, полимиксинами и аминогликозидами, его следует предпочесть в составе комбинированной антимикробной терапии при лечении инфекций, ассоциированных с инвазивными имплантируемыми устройствами, благодаря активности в отношение биопленок. При применении фосфомицина во внутривенной лекарственной форме для лечения инфекций, вызванных микробами, устойчивыми к множеству антибиотиков у детей, следует использовать высокие дозы фосфомицина (более 200 мг/кг/сут). Улучшение профиля безопасности при использовании высоких доз фосфомицина во внутривенной лекарственной форме у детей возможно при проведении регулярного контроля уровня электролитов, особенно у детей в периоде новорожденности и/или в критических состояниях с почечной недостаточностью.
Ключевые слова
Список литературы
1. Geneva, W. & World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017.
2. Hendlin D. et al. Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science. 1969;166:122–123. https://dx.doi.org/10.1126/science.166.3901.122
3. Williams P.C. Potential of fosfomycin in treating multidrug‐resistant infections in children. J PaediatrChild Health. 2020;56:864–872. https://dx.doi.org/10.1111/jpc.14883
4. Falagas M.E., Athanasaki F., Voulgaris G.L., et al. Resistance to fosfomycin: mechanisms, frequency and clinical consequences. Int J Antimicrob. Agents. 2019;53:22–28. https://dx.doi.org/10.1016/j.ijantimicag.2018.09.013
5. Drusano G. et al. The combination of fosfomycin plus meropenem is synergistic for Pseudomonas aeruginosa PAO1 in a hollow-fiber infection model. Antimicrob Agents Chemother. 2018;62:10–1128. https://dx.doi.org/10.1128/AAC.01682-18
6. Ito R. et al. Widespread fosfomycin resistance in Gram-negative bacteria attributable to the chromosomal fosA gene. MBio 2017;8:10–1128. https://dx.doi.org/10.1128/mBio.00749-17
7. Dimopoulos G. et al. Intravenous fosfomycin for the treatment of multidrug-resistant pathogens: what is the evidence on dosing regimens? Expert Rev Anti Infect Ther. 2019;17:201–210. https://dx.doi.org/10.1080/14787210.2019.1573669
8. Kadner R.J., Winkler H.H. Isolation and characterization of mutations affecting the transport of hexose phosphates in Escherichia coli. J Bacteriol. 1973;113:895–900. https://dx.doi.org/10.1128/jb.113.2.895-900.1973
9. Grabein B., Graninger W., Baño J.R., et al. Intravenous fosfomycin – back to the future. Systematic review and meta-analysis of the clinical literature. Clin Microbiol Infect. 2017;23:363–372. https://dx.doi.org/10.1016/j.cmi.2016.12.005
10. Obiero C. et al. Fosfomycin as a potential treatment for neonatal sepsis an open label randomised clinical trial evaluating safety and pharmacokinetics. Arch Dis Childhood. 2022;107(9).
11. Falagas M.E., Vouloumanou E.K., Samonis G., Vardakas K.Z. Fosfomycin. Clin Microbiol Rev. 2016;29:321–347. https://dx.doi.org/10.1128/CMR.00068-15
12. European Medicines Agency. Product information as Approved by the CHMP on 26 March 2020, pending endorsement by the European Commission, 2020. Available: https://www.ema.europa.eu/en/documents/referral/fosfomycin-article-31-referral-annex-iii_en.pdf
13. Bodmann K.-F. et al. Real-World Use, Effectiveness, and Safety of Intravenous Fosfomycin: The FORTRESS Study. Infect Dis Ther. 2025;14(4):765–791. https://dx.doi.org/10.1007/s40121-025-01125-2
14. Antonello R.M. et al. Fosfomycin as partner drug for systemic infection management. A systematic review of its synergistic properties from in vitro and in vivo studies. Antibiotics. 2020;9(8):500. https://dx.doi.org/10.3390/antibiotics9080500
15. MacGowan A.P. et al. The pharmacodynamics of fosfomycin in combination with meropenem against Klebsiella pneumoniae studied in an in vitro model of infection. J Antimicrob Chemother. 2025;80:967–975. https://dx.doi.org/10.1093/jac/dkaf020
16. Ariza J. et al. Executive summary of management of prosthetic joint infections. Clinical practice guidelines by the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enfermedades Infecc. Microbiol Clin. 2017;35(3):189–195. https://dx.doi.org/10.1016/j.eimc.2016.08.012
17. Garcia de la Maria C. et al. Emerging issues on Staphylococcus aureus endocarditis and the role in therapy of daptomycin plus fosfomycin. Expert Rev. Anti Infect Ther. 2023;21:281–293. https://dx.doi.org/10.1080/14787210.2023.2174969
18. Gatti M., Viaggi B., Rossolini G.M., Pea F., Viale P. Targeted therapy of severe infections caused by Staphylococcus aureus in critically ill adult patients: a multidisciplinary proposal of therapeutic algorithms based on real-world evidence. Microorganisms. 2023;11(2):394. https://dx.doi.org/10.3390/microorganisms11020394
19. Herrera-Hidalgo L. et al. Treatment of Enterococcus faecalis infective endocarditis: a continuing challenge. Antibiotics. 2023;12(4):704. https://dx.doi.org/10.3390/antibiotics12040704
20. Klein M. et al. German guidelines on community-acquired acute bacterial meningitis in adults. Neurol Res Pract. 2023;5(1):44. https://dx.doi.org/10.1186/s42466-023-00264-6
21. Kühnen E., Pfeifer G., Frenkel C. Penetration of fosfomycin into cerebrospinal fluid across non-inflamed and inflamed meninges. Infection. 1987;15(6):422–424. https://dx.doi.org/10.1007/BF01647220
22. Oliva A. et al. New antimicrobials and new therapy strategies for endocarditis: weapons that should be defended. J Clin Med. 2023;12(24):7693. https://dx.doi.org/10.3390/jcm12247693
23. Rademacher J. et al. Key summary of German national guideline for adult patients with nosocomial pneumonia-Update 2024 Funding number at the Federal Joint Committee (G-BA): 01VSF22007. Infection. 2024;52(6):2531–2545. https://dx.doi.org/10.1007/s15010-024-02358-y
24. Sojo-Dorado J. et al. Effectiveness of fosfomycin for the treatment of multidrug-resistant Escherichia coli bacteremic urinary tract infections: a randomized clinical trial. JAMA Netw Open. 2022;5(1):e2137277. https://dx.doi.org/10.1001/jamanetworkopen.2021.37277
25. Tseng T.-C. et al. The combination of daptomycin with fosfomycin is more effective than daptomycin alone in reducing mortality of vancomycin-resistant enterococcal bloodstream infections: a retrospective, comparative cohort study. Infect. Dis Ther. 2023;12(2):589–606. https://dx.doi.org/10.1007/s40121-022-00754-1
26. Van de Beek D. et al. ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect. 2016; 22 Suppl 3:S37–S62. https://dx.doi.org/10.1016/j.cmi.2016.01.007
27. Oliva A. et al. Effect of ceftazidime/avibactam plus fosfomycin combination on 30 day mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae: results from a multicentre retrospective study. JAC-Antimicrob Resist. 2022;4(6):dlac121. https://dx.doi.org/10.1093/jacamr/dlac121
28. Putensen C. et al. Current clinical use of intravenous fosfomycin in ICU patients in two European countries. Infection. 2019;47(5):827–836. https://dx.doi.org/10.1007/s15010-019-01323-4
29. Schintler M.V. et al. High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother. 2009;64(3):574–578. https://dx.doi.org/10.1093/jac/dkp230
30. Docobo-Perez F. et al. Pharmacodynamics of fosfomycin: insights into clinical use for antimicrobial resistance. Antimicrob. Agents Chemother. 2015;59(9):5602–5610. https://dx.doi.org/10.1128/AAC.00752-15
31. König C. et al. Cerebrospinal fluid penetration of fosfomycin in patients with ventriculitis: An observational study. Ann Clin Microbiol Antimicrob. 2023;22(1):29. https://dx.doi.org/10.1186/s12941-023-00572-4
32. Darlow C.A. et al. Amikacin combined with fosfomycin for treatment of neonatal sepsis in the setting of highly prevalent antimicrobial resistance. Antimicrob Agents Chemother. 2021;65(7):10–1128. https://dx.doi.org/10.1128/AAC.00293-21
33. Garcia E. et al. Evaluation strategies for triple‐drug combinations against carbapenemase‐producing Klebsiella pneumoniae in an in vitro hollow‐fiber infection model. Clin Pharmacol Ther. 2021;109(4):1074–1080. https://dx.doi.org/10.1002/cpt.2197
34. Wang S. et al. Pharmacodynamics of linezolid plus fosfomycin against vancomycin–resistant Enterococcus faecium in a hollow fiber infection model. Front Microbiol. 2021;12:779885. https://dx.doi.org/10.3389/fmicb.2021.779885
35. Chen T.-T., Chang Y.-F., Wu Y.-C. Clinical use of intravenous fosfomycin in critical care patients in Taiwan. Pathogens. 2023;12(6):841. https://dx.doi.org/10.3390/pathogens12060841
36. Zhanel G. et al. Real-life experience with IV fosfomycin in Canada: Results from the Canadian LEadership on Antimicrobial Real-life usage (CLEAR) registry. J Glob Antimicrob Resist. 2023;33:171–176. https://dx.doi.org/10.1016/j.jgar.2023.03.010
37. Grillo S. et al. Cloxacillin plus fosfomycin versus cloxacillin alone for methicillin-susceptible Staphylococcus aureus bacteremia: a randomized trial. Nat Med. 2023;29(10):2518–2525. https://dx.doi.org/10.1038/s41591-023-02569-0
38. Gennari F.J. Disorders of potassium homeostasis: hypokalemia and hyperkalemia. Crit Care Clin. 2002;18:273–288.
39. Jansen M.-N. et al. Beta-lactam-associated hypokalemia. J Int Med Res. 2024;52(8):03000605241253447. https://dx.doi.org/10.1177/03000605241253447
40. Cañamares-Orbis I., Silva J.T., López-Medrano F., Aguado J. M. Is high-dose intravenous fosfomycin safe for the treatment of patients prone to heart failure? Enfermedades Infecc. Microbiol. Clínica. 2014;33(4):294–294. https://dx.doi.org/10.1016/j.eimc.2014.07.005
41. Florent A., Chichmanian R.-M., Cua E., Pulcini C. Adverse events associated with intravenous fosfomycin. Int J Antimicrob Agents. 2011;37(1):82–3. https://dx.doi.org/10.1016/j.ijantimicag.2010.09.002
42. Tamma P.D. et al. Infectious Diseases Society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections. Clin Infect Dis. 2024 Aug 7;ciae403. https://dx.doi.org/10.1093/cid/ciae403
43. Obiero C.W. et al. Randomised controlled trial of fosfomycin in neonatal sepsis: pharmacokinetics and safety in relation to sodium overload. Arch Dis Child. 2022;107(9);802–810. doi: 10.1136/archdischild-2021-322483
44. Kane Z. et al. IV and oral fosfomycin pharmacokinetics in neonates with suspected clinical sepsis. J Antimicrob Chemother. 2021;76(7):1855–1864. https://dx.doi.org/10.1093/jac/dkab083
45. Molina M., Olay T., Ouero J. Pharmacodynamic Data on Fosfomycin in Underweight Infants. Chemotherapy. 1977;23 Suppl 1:217–222. https://dx.doi.org/10.1159/000222051
46. Jochum F. et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: fluid and electrolytes. Clin Nutr. 2018;37 (6 Pt B):2344–2353. https://dx.doi.org/10.1016/j.clnu.2018.06.948.
47. Brossier D.W. et al. ESPNIC clinical practice guidelines: intravenous maintenance fluid therapy in acute and critically ill children – a systematic review and meta-analysis. Intensive Care Med. 2022;48(12):1691–1708. https://dx.doi.org/10.1007/s00134-022-06882-z
48. Sürmelioğlu N., Çetinkaya F., Gök M.G., et al. Hypernatremia and hypokalemia induced by intravenous fosfomycin therapy in critically ill patients: A Retrospective Study. J Crit Care 2024;81:154670.
49. Noel A., Attwood M., Bowker K., MacGowan A. The pharmacodynamics of fosfomycin against Staphylococcus aureus studied in an in vitro model of infection. Int J Antimicrob Agents. 2020;56(1):105985. https://dx.doi.org/10.1016/j.ijantimicag.2020.105985
50. Pfausler B. et al. Concentrations of fosfomycin in the cerebrospinal fluid of neurointensive care patients with ventriculostomy-associated ventriculitis. J Antimicrob Chemother. 2004;53(5):848–852. https://dx.doi.org/10.1093/jac/dkh158
Об авторах / Для корреспонденции
Анна Викторовна Власова, д.м.н., зав. отделом клинической фармакологии, Морозовская детская городская клиническая больница ДЗМ; доцент кафедры клинической фармакологии и терапии имени академика Б.Е. Вотчала, Российская медицинская академия непрерывного профессионального образования; ведущий специалист ОМО по клинической фармакологии , Научно-исследовательский институт организации здравоохранения и медицинского менеджмента ДЗМ, Москва, Россия; annavlasova75@mail.ru, eLibrary SPIN 5248-6411,ORCID: https://orcid.org/0000-0001-5272-2070 (автор, ответственный за переписку)
Т.Р. Каменева, к.м.н., ОМО по клинической фармакологии, научно-исследовательский институт организации здравоохранения и медицинского менеджмента ДЗМ; Федеральный научно-клинический центр реаниматологии и реабилитологии, Москва, Россия;
tkameneva@fnkcrr.ru, eLibrary SPIN: 8625-7540, ORCID: https://orcid.org/0000-0003-3957-5015
С.В. Яковлев, д.м.н., профессор кафедры клинической фармакологии и терапии имени академика Б.Е. Вотчала, Российская медицинская академия непрерывного профессионального образования; врач – клинический фармаколог, Городская клиническая больница им. С.С. Юдина ДЗМ, Москва, Россия; antimicrob@yandex.ru, ORCID: https://orcid.org/0000-0001-7606-8708, eLibrary SPIN: 9313-1453